
Basic Classification
Algorithms (2)

Rules,
Linear Regression,
Nearest Neighbour

Outline

• Rules
• Linear Regression
• Nearest Neighbour

Generating Rules

• A decision tree can be converted into a rule set

A>5

B>=0

B<7 A>=9

+

+ + --

Generating Rules

• A decision tree can be converted into a rule set

A>5

B>=0

A>=9

-

A>5 && B>=0 && A>=9 -> -

Generating Rules

• A decision tree can be converted into a rule set

A>5

B>=0

A>=9

+ -

A>5 && B>=0 && A>=9 -> -
A>5 && B>=0 && A<9 -> +

Generating Rules

• A decision tree can be converted into a rule set

A>5

B>=0

B<7 A>=9

+ + -

A>5 && B>=0 && A>=9 -> -
A>5 && B>=0 && A<9 -> +
A>5 && B<0 && B<7 -> +

Generating Rules

• A decision tree can be converted into a rule set

A>5

B>=0

B<7 A>=9

+ + --

A>5 && B>=0 && A>=9 -> -
A>5 && B>=0 && A<9 -> +
A>5 && B<0 && B<7 -> +
A>5 && B<0 && B>=7 -> -

Generating Rules

• A decision tree can be converted into a rule set

A>5

B>=0

B<7 A>=9

+

+ + --

A>5 && B>=0 && A>=9 -> -
A>5 && B>=0 && A<9 -> +
A>5 && B<0 && B<7 -> +
A>5 && B<0 && B>=7 -> -
A<=5 -> +

Generating Rules

• A decision tree can be converted into a rule set

A>5

B>=0

B<7 A>=9

+

+ + --

A>5 && B>=0 && A>=9 -> -
A>5 && B>=0 && A<9 -> +
A>5 && B<0 && B<7 -> +
A>5 && B<0 && B>=7 -> -
A<=5 -> +

• Often overly complex, simplifying is not trivial
• tests each node in root-leaf path to see if it can be

eliminated without loss in accuracy (C4.5rule)

Covering algorithms

• Generate rule sets directly
• for each class:

• find rule set that covers all instances in it
(excluding instances of other classes)

• Covering approach
• at each stage a rule is

identified that covers
some of the instances

Example:
generating a rule

Class a

Example:
generating a rule

Class a

Example:
generating a rule

Class a

Example:
generating a rule

Class b,
rule 1

Example:
generating a rule

Class b,
rule 2

Example:
generating a rule

Class b,
rule 2

• More rules could be added for a “perfect” rule set

Example:
generating a rule

Rules => Trees

Rules vs. Trees

Rules (PRISM) Trees (C4.5)

Overall, rules generate clearer subsets, especially when decision trees
suffer from replicated subtrees

A simple covering algorithm
(PRISM)

• Generate a rule by adding tests that maximize rule’s
accuracy

• Goal: maximize accuracy p/t
• t: total number of instances covered by rule
• p: `positive’ examples of the class covered by rule
• t – p: number of errors made by rule

• Stop when p/t = 1 or the set of instances can’t be
split any further (can’t test twice on same attribute)

 PRISM
Pseudo-code

For each class C

 Initialize D to the instance set

 While D contains instances in class C

 Create a rule R with an empty left-hand side that predicts class C

 Until R is perfect (or there are no more attributes to use) do

 For each attribute A not mentioned in R, and each value v,

 Consider adding the condition A = v to the left-hand side of R

 Select A and v to maximize the accuracy p/t

 (break ties by choosing the condition with the largest p)

 Add A = v to R

 Remove the instances covered by R from D

age spectacle-prescrip astigmatism tear-prod-rate contact-lenses
young myope no reduced none
young myope no normal soft
young myope yes reduced none
young myope yes normal hard
young hypermetrope no reduced none
young hypermetrope no normal soft
young hypermetrope yes reduced none
young hypermetrope yes normal hard
pre-presbyopic myope no reduced none
pre-presbyopic myope no normal soft
pre-presbyopic myope yes reduced none
pre-presbyopic myope yes normal hard
pre-presbyopic hypermetrope no reduced none
pre-presbyopic hypermetrope no normal soft
pre-presbyopic hypermetrope yes reduced none
pre-presbyopic hypermetrope yes normal none
presbyopic myope no reduced none
presbyopic myope no normal none
presbyopic myope yes reduced none
presbyopic myope yes normal hard
presbyopic hypermetrope no reduced none
presbyopic hypermetrope no normal soft
presbyopic hypermetrope yes reduced none
presbyopic hypermetrope yes normal none

contact lens data

age spectacle-prescrip astigmatism tear-prod-rate contact-lenses
young myope no reduced none
young myope no normal soft
young myope yes reduced none
young myope yes normal hard
young hypermetrope no reduced none
young hypermetrope no normal soft
young hypermetrope yes reduced none
young hypermetrope yes normal hard
pre-presbyopic myope no reduced none
pre-presbyopic myope no normal soft
pre-presbyopic myope yes reduced none
pre-presbyopic myope yes normal hard
pre-presbyopic hypermetrope no reduced none
pre-presbyopic hypermetrope no normal soft
pre-presbyopic hypermetrope yes reduced none
pre-presbyopic hypermetrope yes normal none
presbyopic myope no reduced none
presbyopic myope no normal none
presbyopic myope yes reduced none
presbyopic myope yes normal hard
presbyopic hypermetrope no reduced none
presbyopic hypermetrope no normal soft
presbyopic hypermetrope yes reduced none
presbyopic hypermetrope yes normal none

Rule: IF true, Then hard
Next step?

Example:
contact lens data

• Rule we seek to refine:
• Possible tests:

Age = Young 2/8

Age = Pre-presbyopic 1/8

Age = Presbyopic 1/8

Spectacle prescription = Myope 3/12

Spectacle prescription = Hypermetrope 1/12

Astigmatism = no 0/12

Astigmatism = yes 4/12

Tear production rate = Reduced 0/12

Tear production rate = Normal 4/12

If ?
 then recommendation = hard

Example:
contact lens data

• Rule we seek to refine:
• Possible tests:

Age = Young 2/8

Age = Pre-presbyopic 1/8

Age = Presbyopic 1/8

Spectacle prescription = Myope 3/12

Spectacle prescription = Hypermetrope 1/12

Astigmatism = no 0/12

Astigmatism = yes 4/12

Tear production rate = Reduced 0/12

Tear production rate = Normal 4/12

If ?
 then recommendation = hard

(tied, same
coverage)

Rule: IF astigmatism=yes, Then hard

Age Spectacle prescription Astigmatism Tear production rate Recommended lenses
Young Myope Yes Reduced None
Young Myope Yes Normal Hard
Young Hypermetrope Yes Reduced None
Young Hypermetrope Yes Normal Hard
Pre-presbyopic Myope Yes Reduced None
Pre-presbyopic Myope Yes Normal Hard
Pre-presbyopic Hypermetrope Yes Reduced None
Pre-presbyopic Hypermetrope Yes Normal None
Presbyopic Myope Yes Reduced None
Presbyopic Myope Yes Normal Hard
Presbyopic Hypermetrope Yes Reduced None
Presbyopic Hypermetrope Yes Normal None

Next step?

Further refinement

• Current state:

• Possible tests:
Age = Young 2/4

Age = Pre-presbyopic 1/4

Age = Presbyopic 1/4

Spectacle prescription = Myope 3/6

Spectacle prescription = Hypermetrope 1/6

Tear production rate = Reduced 0/6

Tear production rate = Normal 4/6

If astigmatism = yes
 and ?
 then recommendation = hard

Further refinement

• Current state:

• Possible tests:
Age = Young 2/4

Age = Pre-presbyopic 1/4

Age = Presbyopic 1/4

Spectacle prescription = Myope 3/6

Spectacle prescription = Hypermetrope 1/6

Tear production rate = Reduced 0/6

Tear production rate = Normal 4/6

If astigmatism = yes
 and ?
 then recommendation = hard

IF astigmatism=yes & tear_production_rate=normal, Then hard

Age Spectacle prescription Astigmatism Tear production rate Recommended lenses
Young Myope Yes Normal Hard
Young Hypermetrope Yes Normal hard
Pre-presbyopic Myope Yes Normal Hard
Pre-presbyopic Hypermetrope Yes Normal None
Presbyopic Myope Yes Normal Hard
Presbyopic Hypermetrope Yes Normal None

Next step?

Further refinement
• Current state:

• Possible tests:

• Tie between the first and the fourth test
• We choose the one with greater coverage

Age = Young 2/2

Age = Pre-presbyopic 1/2

Age = Presbyopic 1/2

Spectacle prescription = Myope 3/3

Spectacle prescription = Hypermetrope 1/3

If astigmatism = yes
 and tear production rate = normal
 and ?
then recommendation = hard

Further refinement
• Current state:

• Possible tests:

• Tie between the first and the fourth test
• We choose the one with greater coverage

Age = Young 2/2

Age = Pre-presbyopic 1/2

Age = Presbyopic 1/2

Spectacle prescription = Myope 3/3

Spectacle prescription = Hypermetrope 1/3

If astigmatism = yes
 and tear production rate = normal
 and ?
then recommendation = hard

IF astigmatism=yes & tear_production_rate=normal &
spectacle_prescription=myope, Then hard

Age Spectacle prescription Astigmatism Tear production rate Recommended lenses

Young Myope Yes Normal Hard

Pre-presbyopic Myope Yes Normal Hard

Presbyopic Myope Yes Normal Hard

Next step?

The result

• Final rule:

• Second rule for recommending “hard lenses”:
(built from instances not covered by first rule)

• These two rules cover all “hard lenses”:
• Process is repeated with other two classes

If astigmatism = yes
and tear production rate = normal
and spectacle prescription = myope
then recommendation = hard

If age = young and astigmatism = yes
and tear production rate = normal
then recommendation = hard

Rules vs. Decision Lists

• PRISM with outer loop removed generates a decision list
for one class
• Subsequent rules are designed for rules that are not

covered by previous rules
• Order doesn’t matter: all rules predict the same class

• Outer loop considers all classes separately: no class order
• Order-independent rules are problematic:

• Example has multiple classifications (overlapping rules)
• Choose rule with highest coverage

• Example has no classification at all (default rule)
• Default class

• Methods like PRISM (dealing with one class) are separate-
and-conquer algorithms:
• First, a rule is identified
• Then, all instances covered by the rule are separated out
• Finally, the remaining instances are “conquered”

• Others, like Decision Trees, are divide-and-conquer methods:
• First, data is split
• Then, each split modeled/conquered independently

Rules vs. Decision Trees

Outline

• Rules
• Linear Regression
• Nearest Neighbor

Linear models

• Work most naturally with numeric attributes
• Basic technique for numeric prediction: linear regression

• Outcome is linear combination of attributes

• Weights are calculated from the training data
• Predicted value for first training instance a(1)

a0 = 1 (added for convenience)

Linear regression

Linear regression
It doesn’t always fit

Linear regression
It doesn’t always fit

Minimizing
the squared error

• Choose k +1 coefficients (weights) to minimize the squared
error on the training data:

• Derive coefficients using standard matrix operations
• Accurate method if enough data available
• Minimizing the absolute error is more difficult

Standard Matrix
Operations? (extra)

• Residuals: ϵ = X - Aw

• Minimize ϵ’ϵ = (X - Aw)’ (X - Aw)!
• Derivative: d/dw((X - Aw)’ (X - Aw)) = -2A’(X - Aw)’
• Minimal for: -2A’(X - Aw)’=0
• Thus: A’X = A’Aw
• Solve: w = (A’A)-1 A’X

Many other (better)
ways...

Simple linear
regression

Regression for
Classification

• Any regression technique can be used for classification
• Similar to a membership function
• Training:

• Perform a regression for each class, setting the output to 1
for training instances that belong to class, and 0 for others

• Prediction:
• Predict class corresponding to model with largest output

value
• For linear regression this is known as multi-response

linear regression

Logistic regression

• Problem:
• model output is not a proper probability (can be >1)
• least squares assumes that errors are statistical independent and

normally distributed (wrong: only 0’s and 1’s)

Linear regression Logistic regression

Logistic regression

• Logistic regression: alternative to linear regression
• Designed for classification problems
• Transform {0,1} values to [-inf, +inf], build model, transform to [0,1]
• Similar to `odds’

• P(y=1)=0.75 -> P/(1-P) = 3 -> 1 is 3x more likely than 0
• Replace target variable P[1|w0,w1,...wk] by logit transform

• Choose w to maximize log-likelihood (not so simple)
• maximum likelihood method

P= Class probability = P[1|w0,w1,...wk]

Logistic regression

• Resulting model:

• Classification: class with highest probability

linear models
final thoughts

• Not appropriate if data exhibits non-linear dependencies
• But: can serve as building blocks for more complex schemes

(i.e. model trees: trees with models in the leaves)
• Example: multi-response linear regression defines a

hyperplane for any two given classes

• Given two weight vectors for two classes, predict class 1
when:

linear models
final thoughts

• Linear classifiers have limitations, e.g. can’t learn XOR
• But: combinations of them can (→ Neural Nets)
• Perceptron (1-layer neural network): adjust weights to

move hyperplane towards misclassified examples by
adding/subtracting the example

w0 w0

a

a a

a

Outline

• Rules
• Linear Regression
• Nearest Neighbor

Instance-based
representation

• Simplest form of learning: rote learning
• Don’t build a model, `remember’ the training instances
• Training instances are searched for instance that most closely

resembles new instance
• The instances themselves represent the knowledge
• Also called instance-based learning, or lazy learning

• Similarity function defines which instances are `similar’
• Methods:

• nearest-neighbor
• k-nearest-neighbor
• …

1-NN example

The distance function

• One numeric attribute
• Distance = difference between the two attribute values involved

(or a function thereof)
• Several numeric attribute

• e.g. Euclidean distance is used and attributes are normalized
• Nominal attributes:

• Distance = 1 if values are different, 0 if they are equal
• Are all attributes equally important?

• Usually not, weighting the attributes might be necessary

Euclidean distance

• Most instance-based schemes use Euclidean
distance:

! a(1) and a(2): two instances with k attributes
• Taking the square root is not required when

comparing distances
• Other popular metric: city-block (Manhattan) metric

• Adds differences without squaring them

Normalization

• Different attributes are measured on different
scales ⇒ need to be normalized:

! vi : the actual value of attribute i
• Nominal attributes: distance either 0 or 1
• Common policy for missing values: assumed to be

maximally distant (given normalized attributes)

or

k-NN example

• k-NN approach: majority vote (or other function) to derive label
• k = regularization parameter: higher k means smoother decision

boundary, less overfitting

Nearest Neighbors

• Very accurate (for few attributes, lots of data)
• Curse of dimensionality: Every added dimension increases distances,

exponentially more training data needed
• Typically very slow (at prediction time):

• simple versions scan all training data to make prediction
• better training set representations exist: kD-tree, ball tree,...

• Assumes all attributes are equally important
• Remedy: attribute selection or weighted distance measures

• Noisy data:
• Take a majority vote over the k nearest neighbors
• Removing noisy instances from dataset (difficult!)

• Statisticians have used k-NN since early 1950s
• If n → ∞ and k/n → 0, error approaches minimum

