

Learning Algorithm Evaluation

OUTLINE

Why?

- Overfitting

How?

- Holdout vs Cross-validation

What?

- Evaluation measures

Who wins?

- Statistical significance

QUIZ

Is this a good model?

OVERFITTING

While it fits the training data perfectly, it may perform badly on unseen data. A simpler model may be better.

OUTLiNE

Why?

- Overfitting

How?

- Holdout vs Cross-validation

What?

- Evaluation measures

Who wins?

- Statistical significance

A FIRST EVALUATION MEASURE

- Predictive accuracy
- Success: instance's class is predicted correctly
- Error: instance's class is predicted incorrectly
- Error rate: \#errors / \#instances
- Predictive Accuracy: \#successes/\#instances
- Quiz
- 50 examples, 10 classified incorrectly
- Accuracy? Error rate?

RULE \# 1

RULE \# 1
Never evaluate on training data!

Holdout (TRAIN AND TEST)

DATABASE		
TABLE		
TARGET	VARIABLEA	VARIABLEB
yes	10	2
no	11	3
yes	12	2
yes	10	3
no	11	1

Holdout (TRAIN AND TEST)

DATABASE		
TABLE		
TARGET	VARIABLEA	VARIABLEB
yes	10	2
no	11	3
yes	12	2
yes	10	3
no	11	1

TRAINING SET

TARGET
yes
no
yes

VARIABLEA VARIABLE B $10 \quad 2$

Holdout (TRAIN AND TEST)

DATABASE		
TABLE		
TARGET	VARIABLEA	VARIABLE B
yes	10	2
no	11	3
yes	12	2
yes	10	3
no	11	1

TRAINING SET

TARGET
yes
no
yes

VARIABLEA
10
11
12

VARIABLEB 2
3
3
2

	TEST SET		
TARGET	10	3	
yes	11	1	
no		VARIABLEA	

a.k.a. holdout set

Holdout (TRAIN AND TEST)

DATABASE		
TABLE		
TARGET	VARIABLEA	VARIABLEB
yes	10	2
no	11	3
yes	12	2
yes	10	3
no	11	1

TRAINING SET		
TARGET	VARIABLEA	VARIABLE B
yes	10	2
no	11	3
yes	12	2

TEST SET

TEST SET				
VARIABLEA	VARIABLEB			
TARGET	10	3		
yes	11	1		
no				

a.k.a. holdout set

Holdout (TRAIN AND TEST)

DATABASE		
TABLE		
TARGET	VARIABLEA	VARIABLEB
yes	10	2
no	11	3
yes	12	2
yes	10	3
no	11	1

TEST SET
a.k.a. holdout set

TRAINING SET		
TARGET	VARIABLEA	VARIABLEB
yes	10	2
no	11	3
yes	12	2

QUIZ

Can I retry with other parameter settings?

RULE \#2

RULE \#2

Never train/optimize on test data!
 (that includes parameter selection)

Holdout (TRAIN AND TEST)

You need a separate optimization set to tune parameters

TEST DATA LEAKAGE

- Never use test data to create the classifier
- Can be tricky: e.g. social network
- Proper procedure uses three sets
- training set: train models
- optimization/validation set: optimize algorithm parameters
- test set: evaluate final model

Holdout (TRAIN AND TEST)

Build final model on ALL data (more data, better model)

TABLE

TARGET	prediction
yes	8 yes
no	8 no
yes	8 yes
yes	8 yes
no	8 no

VARIABLEA	VARIABLEB
10	2
11	3
12	2
10	3
11	1

MODEL
IF VARIABLE B >2 THEN TARGET $=$ yes ELSE TARGET $=$ no

MAKING THE MOST OF DATA

- Once evaluation is complete, and algorithm/ parameters are selected, all the data can be used to build the final classifier
- Trade-off: performance <-> evaluation accuracy
- More training data, better model (but returns diminish)
- More test data, more accurate error estimate

ISSUES

- Small data sets
- Random test set can be quite different from training set (different data distribution)
- Unbalanced class distributions
- One class can be overrepresented in test set
- Serious problem for some domains:
- medical diagnosis: 90% healthy, 10% disease
- eCommerce: 99% don't buy, 1% buy
- Security: $>99.99 \%$ of Americans are not terrorists

BALANCING UNBALANCED DATA

Sample equal amounts from minority and majority class + ensure approximately equal proportions in train/test set

Original

Train
Test

STRATIFIED SAMPLING

Advanced class balancing: sample so that each class represented with approx. equal proportions in both subsets
E.g. take a stratified sample of 50 instances:

REPEATED HOLDOUT METHOD

- Evaluation still biased by random test sample
- Solution: repeat and average results
- Random, stratified sampling, N times
- Final performance = average of all performances

REPEATED HOLDOUT METHOD

- Evaluation still biased by random test sample
- Solution: repeat and average results
- Random, stratified sampling, N times
- Final performance = average of all performances

REPEATED HOLDOUT METHOD

- Evaluation still biased by random test sample
- Solution: repeat and average results
- Random, stratified sampling, N times
- Final performance $=$ average of all performances

REPEATED HOLDOUT METHOD

- Evaluation still biased by random test sample
- Solution: repeat and average results
- Random, stratified sampling, N times
- Final performance = average of all performances

REPEATED HOLDOUT METHOD

- Evaluation still biased by random test sample
- Solution: repeat and average results
- Random, stratified sampling, N times
- Final performance = average of all performances

K-FOLD CROSS-VALIDATION

Split data (stratified) in k-folds Use ($k-1$) for training, 1 for testing, repeat k times, average results
\bigcirc train
\bigcirc test

Original

Fold 1

Fold 2

Fold 3

CROSS-VALIDATION

- Standard method:
- stratified 10-fold cross-validation
- Experimentally determined. Removes most of sampling bias
- Even better: repeated stratified cross-validation
- Popular: 10×10-fold CV, 2×3-fold CV

LEAVE-ONE-OUT CROSS-VALIDATION

Original

.

- A particular form of cross-validation:
- \#folds = \#instances
- n instances, build classifier n times
- Makes best use of the data, no sampling bias
- Computationally very expensive

OUTLINE

Why?

- Overfitting

How?

- Holdout vs Cross-validation

What?

- Evaluation measures

Who wins?

- Statistical significance

SOME OTHER Evaluation Measures

- ROC: Receiver-Operator Characteristic
- Precision and Recall
- Cost-sensitive learning
- Evaluation for numeric predictions
- MDL principle and Occam's razor

ROC CURVES

- ROC curves
- Receiver Operating Characteristic
- From signal processing: tradeoff between hit rate and false alarm rate over noisy channel
- Method:
- Plot True Positive rate against False Positive rate

CONFUSION MATRIX

TPrate (sensitivity): $\quad P(T P)=\frac{T P}{T P+F N}$
FPrate (fall-out): $\quad P(F P)=\frac{F P}{F P+T N}$

ROC CURVES

- ROC curves

- Receiver Operating Characteristic
- From signal processing: tradeoff between hit rate and false alarm rate over noisy channel
- Method:
- Plot True Positive rate against False Positive rate
- Collect many points by varying prediction threshold
- For probabilistic algorithms (probabilistic predictions)
- Non-probabilistic algorithms have single point
- Or, make cost sensitive and vary costs (see below)

ROC CURVES

Predictions		
inst $\mathrm{P}(+)$ actual 1 0.8 + 2 0.5 - 3 0.45 + 4 0.3 -		

ROC CURVES

ROC CURVES

Predictions			Thresholds					
inst	$\mathrm{P}(+)$	actual	00.3	0.45	0.5	0.8		
1	0.8	+	+ +	+	+	-	negative	,
2	0.5	-	+ +	+	-	-		
3	0.45	+	+ +	-	-	-	Nin	An
4	0.3	-	+ -	-	-	-		
			0.3	0.45 0.5	0.5	0.8 ¢ TP	+	-
		TPrate	11	1/2				
		FPrate	$11 / 2$	1/2				
							\star	

ROC CURVES

Predictions			Thresholds					
inst	$\mathrm{P}(+)$	actual	00.3	0.45	0.5	0.8		
1	0.8	+	+ +	+	+	-	negative	,
2	0.5	-	+ +	+	-	-		
3	0.45	+	+ +	-	-	-	Hin	An
4	0.3	-	+ -	-	-	-		
			0.3	0.45 0.5		0.8 ¢ TP	+	-
		TPrate	11	1/2 1/	1/2			
		FPrate	$11 / 2$	$1 / 20$				
							\star	

ROC CURVES

ROC CURVES

ROC CURVES

ROC CURVES

ROC CURVES ALTERNATIVE METHOD

- Rank probabilities, start curve in $(0,0)$
- Start curve in $(0,0)$, move down probability list
- If next n are actually +: move up n, else move n right

Predictions		
inst	$P(+)$	actual
1	0.8	+
2	0.5	-
3	0.45	+
4	0.3	-

ROC CURVES ALTERNATIVE METHOD

- Rank probabilities, start curve in $(0,0)$
- Start curve in $(0,0)$, move down probability list
- If next n are actually +: move up n, else move n right

Predictions		
inst	$\mathrm{P}(+)$	actual
1	0.8	+
2	0.5	-
3	0.45	+
4	0.3	-

ROC CURVES ALTERNATIVE METHOD

- Rank probabilities, start curve in $(0,0)$
- Start curve in $(0,0)$, move down probability list
- If next n are actually +: move up n, else move n right

Predictions		
inst	$P(+)$	actual
1	0.8	+
2	0.5	-
3	0.45	+
4	0.3	-

ROC CURVES ALTERNATIVE METHOD

- Rank probabilities, start curve in $(0,0)$
- Start curve in $(0,0)$, move down probability list
- If next n are actually +: move up n, else move n right

Predictions		
inst $\mathrm{P}(+)$ actual 1 0.8 + 2 0.5 - 3 0.45 + 4 0.3 -		

ROC CURVES ALTERNATIVE METHOD

- Rank probabilities, start curve in $(0,0)$
- Start curve in $(0,0)$, move down probability list
- If next n are actually +: move up n, else move n right

Predictions		
inst $P(+)$ actual 1 0.8 + 2 0.5 - 3 0.45 + 4 0.3 -		

ROC CURVES ALTERNATIVE METHOD

- Rank probabilities, start curve in $(0,0)$
- Start curve in $(0,0)$, move down probability list
- If next n are actually +: move up n, else move n right

Predictions		
inst $P(+)$ actual 1 0.8 + 2 0.5 - 3 0.45 + 4 0.3 -		

ROC CURVES ALTERNATIVE METHOD

- Rank probabilities, start curve in $(0,0)$
- Start curve in $(0,0)$, move down probability list
- If next n are actually +: move up n, else move n right

Predictions		
inst $P(+)$ actual 1 0.8 + 2 0.5 - 3 0.45 + 4 0.3 -		

ROC CURVES REAL EXAMPLE

CROSS-VALIDATION AND ROC CURVES

- Simple method of getting a ROC curve using crossvalidation:
- Collect probabilities for instances in test folds
- Sort instances according to probabilities
- a ROC curve for each fold, average afterwards
- This method is implemented in WEKA
- For n-class problems:
- make 1 class positive, others negative
- build ROC curve, repeat n times
- take weighted average (by class weight)

ROC CURVES

METHOD SELECTION

PRECISION AND RECALL

- Precision: TP /(TP+FP)
- Recall: TP/(TP+FN) (= TPrate)
E.g. Google's 1st result page:

Precision: \% returned pages that are relevant
Recall: \% relevant pages that are returned

PRECISION AND RECALL

- Precision and recall constitute a trade-off
- Often aggregated:
- 3-point average: avg. precision at 20,50,80\% recall
- F-measure: harmonic average of precision and recall:
(2×recall×precision)/(recall+precision)
- Area under precision-recall curve

Precisionvs. Recall

Cost Sensitive LeARNing

DIfferent Costs

- In practice, TP and FN errors incur different costs
- Examples:
- Medical diagnostic tests: does X have leukemia?
- Loan decisions: approve mortgage for X ?
- Promotional mailing: will X buy the product?
- Add cost matrix to evaluation that weighs TP,FP,...

	pred +	pred -
actual +	CTP $=0$	CFN $=100$
actual -	CFP $=1$	CTN $=0$

COST-SENSITIVE CLASSIFICATION

- Probabilistic algorithms: calculate costs afterwards
- Instead of predicting most likely class, predict the one that has the smallest expected misclassification cost
- e.g. $p+=0.8, p-=0.2$
- cost $+:[\mathrm{p}+\mathrm{p}-\mathrm{p}] \times\left[\mathrm{c}_{\mathrm{Tr}}, \mathrm{C}_{\mathrm{FP}}\right]=1$
- cost- : $[\mathrm{p}+\mathrm{p}-\mathrm{p}] \mathrm{x}\left[\mathrm{C}_{\mathrm{FN}}, \mathrm{C}_{\mathrm{CN}}\right]=0.8$

	pred +	pred -
actual +	CTP $=0$	CFN $=1$
actual -	CFP $=5$	CTN $=0$

- Non-probabilistic algorithms: introduce costs during training:
- Re-sample instances according to costs: higher \% of negatives: $\mathrm{FP}<\mathrm{FN}$
- Weight instances according to costs

EVALUATING NUMERIC PREDICTION

- Numeric predictions:
- Actual target values: $a_{1} a_{2} \ldots a_{n}$
- Predicted target values: $p_{1} p_{2} \ldots p_{n}$
- Mean-squared error:

$$
\frac{\left(p_{1}-a_{1}\right)^{2}+\ldots+\left(p_{n}-a_{n}\right)^{2}}{n}
$$

- Root mean-squared error:

$$
\sqrt{\frac{\left(p_{1}-a_{1}\right)^{2}+\ldots+\left(p_{n}-a_{n}\right)^{2}}{n}}
$$

- Mean absolute error:

$$
\frac{\left|p_{1}-a_{1}\right|+\ldots+\left|p_{n}-a_{n}\right|}{n}
$$

- Sometimes relative error values more appropriate
- e.g. 10% for an error of 50 when predicting 500

CORRELATION COEFFICIENT

- Measures the statistical correlation between the predicted values and the actual values

$$
S_{P A}=\frac{\sum_{i}\left(p_{i}-\bar{p}\right)\left(a_{i}-\bar{a}\right)}{n-1} \quad S_{P}=\frac{\sum_{i}\left(p_{i}-\bar{p}\right)^{2}}{\sqrt{S_{P} S_{A}}} \quad S_{A}=\frac{\sum_{i}\left(a_{i}-\bar{a}\right)^{2}}{n-1}
$$

- Scale independent, between -1 (inverse correlation) and +1 (perfect correlation)
- Error: smaller is better, correlation: larger is better

WHICH MEASURE?

- Classification: depends on application
- e.g. information retrieval: precision/recall very important
- Results may vary, especially for multi-class problems
- Regression: best look at all of them
- Many outliers in data: avoid squared error measures
- Otherwise, relative scores don't differ much:

Root mean-squared error Mean absolute error Root rel squared error Relative absolute error Correlation coefficient

A	B	C	D
67.8	91.7	63.3	57.4
41.3	38.5	33.4	29.2
42.2%	57.2%	39.4%	35.8%
43.1%	40.1%	34.8%	30.4%
0.88	0.88	0.89	0.91

D best

THE MDL PRINCIPLE

- MDL stands for minimum description length
- The description length is defined as:
$L(H)$: space required to describe a hypothesis
+

$L(D \mid H)$: space required by using the hypothesis

- Examples
- L(H): model, L(D | H): encoded data
- Classifier: $\mathrm{L}(\mathrm{H})$: classifier, $\mathrm{L}(\mathrm{D} \mid \mathrm{H})$: mistakes on the training data
- Aim: we seek a classifier with minimal DL
- MDL principle is a model selection criterion

MODEL SELECTION CRITERIA

- Model selection criteria attempt to find a good compromise between:
- The complexity of a model
- Its prediction accuracy on the training data
- Reasoning: a good model is a simple model that achieves high accuracy on the given data
- Also known as Occam's Razor : the best theory is the smallest one that describes all the facts

William of Ockham, born in the village of Ockham in Surrey (England) around 1285, was the most influential philosopher of the 14th century and a controversial theologian.

ELEGANCE VS. ERRORS

- Theory 1 : very simple, elegant theory that explains the data almost perfectly
- Theory 2 : significantly more complex theory that reproduces the data without mistakes
- Theory 1 is probably preferable
- Classic example: Kepler's three laws on planetary motion
- Less accurate than Copernicus's latest refinement of the Ptolemaic theory of epicycles

MDL AND COMPRESSION

- MDL principle relates to data compression:
- The best theory is the one that compresses the data the most
- I.e. to compress a dataset we generate a model and then store the model and its mistakes

DISCUSSION OF MDL PRINCIPLE

- Advantage: makes full use of the training data when selecting a model
- Disadvantage 1: appropriate coding scheme / prior probabilities for theories are crucial
- Disadvantage 2: no guarantee that the MDL theory is the one which minimizes the expected error
- Note: Occam's Razor is an axiom!
- Epicurus' principle of multiple explanations: keep all theories that are consistent with the data

OUTLINE

Why?

- Overfitting

How?

- Holdout vs Cross-validation

What?

- Evaluation measures

Who wins?

- Statistical significance

COMPARING DATA MINING SCHEMES

- Which of two learning algorithms performs better?
- Note: this is domain/measure dependent!
- Obvious way: compare 10 -fold CV estimates
- Problem: variance in estimate
- Different random sample, different estimate
- Variance can be reduced using repeated CV
- However, we still don't know whether results are reliable

SIGNIFICANCE TESTS

- Significance tests tell us how confident we can be that there really is a difference
- Null hypothesis: there is no "real" difference (mean ${ }_{A}=$ mean $_{B}$)
- Alternative hypothesis: there is a difference
- A significance test measures how much evidence there is in favor of rejecting the null hypothesis
- E.g. 10 cross-validation scores: B better than A???

PAIRED T-TEST

Not a normal distribution (although it will be for large $k,>100$)
-> Student's distribution with k -1 degrees of freedom

- No normal distribution: we need more than the means
- Student's t-test tells whether the means of two samples (e.g., k cross-validation scores) are significantly different
- Use a paired t-test when individual samples are paired
- i.e., they use the same randomization
- Same CV folds are used for both algorithms

PAIRED T-TEST

- Fix a significance level α
- Significant difference at $\alpha \%$ level implies $(100-\alpha) \%$ chance that there really is a difference. For scientific work: $0,5 \%$ or smaller ($>99,5 \%$ certainty)
- Divide α by two (two-tailed test)
- We do not know whether mean ${ }_{A}>$ mean $_{B}$ or vice versa
- Look up the z-value corresponding to $\alpha / 2$:
- If $t \leq-z$ or $t \geq z$: difference is significant

a	z
$0,1 \%$	4.3
$0,5 \%$	3.25
1%	2.82
5%	1.83
10%	1.38
20%	0.88

Table of confidence intervals for Student's distribution with 9 (10-1) degrees of freedom

PAIRED T-TEST

Algorithm

UNPAIRED OBSERVATIONS

- If CV estimates are from different randomizations (different folds), they are no longer paired
- In general: comparing k-fold and j-fold CV results
- Use $u n$-paired t -test with $\min (k, j)-1$ degrees of freedom
- The t-statistic becomes:

$$
t=\frac{m_{d}}{\sqrt{\sigma_{d}^{2} / k}} \Longleftrightarrow t=\frac{m_{x}-m_{y}}{\sqrt{\frac{\sigma_{x}^{2}}{k}+\frac{\sigma_{y}^{2}}{j}}}
$$

SUMMARY

- Use holdout method for LARGE data
- Use Cross-validation for small data, with stratified sampling
- Don't use test data for parameter tuning - use separate optimization/validation data
- Use appropriate evaluation measures
- Consider costs when appropriate
- Perform a statistical significance test to choose between algorithm

