
Data Engineering
Data preprocessing and transformation

Just apply a learner? NO!
l Algorithms are biased

l No free lunch theorem: considering all possible data distributions,
no algorithm is better than another

l Algorithms make assumptions about data
l Conditionally independent features (naive Bayes)
l All features relevant (e.g., kNN, C4.5)
l All features discrete (e.g., 1R)
l Little/no noise (many regression algorithms)
l Little/no missing values (e.g., PCA)

l Given data:
l Choose/adapt algorithm to data (selection/parameter tuning)
l Adapt data to algorithm (data engineering)

Data Engineering

• Attribute selection (feature selection)
• Remove features with little/no predictive information

• Attribute discretization
• Convert numerical attributes to nominal ones

• Data transformations (feature generation)
• Transform data to another representation

• Dirty data
• Remove missing values or outliers

Irrelevant features can
‘confuse’ algorithms

• kNN: curse of dimensionality
• # training instances required increases exponentially with #

(irrelevant) attributes
• Distance between neighbors increases with every new dimension

• C4.5: data fragmentation problem
• select attributes on less and less data after every split
• Even random attributes can look good on small samples
• Partially corrected by pruning

• Naive Bayes: redundant (very similar) features
• Features clearly not independent, probabilities likely incorrect
• But, Naive Bayes is insensitive to irrelevant features (ignored)

Attribute selection

• Other benefits
• Speed: irrelevant attributes often slow down algorithms
• Interpretability: e.g. avoids huge decision trees

• 2 types:
• Feature Ranking: rank by relevancy metric, cut off
• Feature Selection: search for optimal subset

Attribute selection

2 approaches (besides manual removal):
• Filter approach: Learner independent, based on data

properties or simple models built by other learners

• Wrapper approach: Learner dependent, rerun learner with
different attributes, select based on performance

filter learner

 wrapper

learner

Filters

l Basic: find smallest feature set that separates data
l Expensive, often causes overfitting

l Better: use another learner as filter
l Many models show importance of features

l e.g. C4.5, 1R, kNN, ...
l Recursive: select 1 attribute, remove, repeat
l Produces ranking: cut-off defined by user

Filters

7

Using C4.5
• select feature(s) tested in top-level node(s)
• `Decision stump’ (1 node) sufficient

Select feature ‘outlook’,
remove, repeat

Filters

Using 1R
• select the 1R feature, repeat

Rule:
If(outlook=sunny) play=no, else play=yes

Select feature ‘outlook’,
remove, repeat

Filters

Using kNN: weigh features by capability to separate classes
• same class: reduce weight of features with ≠ value (irrelevant)
• other class: increase weight of features with ≠ value (relevant)

Different classes:
increase weight of a1 ∝ d1

increase weight of a2 ∝ d2

d2

d1

Filters

Using Linear regression (simple or logistic)
• Select features with highest weights

Select wi, so that wi ≥ wj, i ≠ j
remove, repeat

l Direct filtering: use data properties
l Correlation-based Feature Selection (CFS)

l Select attributes with high class correlation, little intercorrelation
l Select subset by aggregating over attributes Aj for class C

l Ties broken in favor of smaller subsets

l Fast, default in WEKA

€

U A,B()= 2
H A()+H B() −H A,B()

H A()+H B()
∈ 0,1[]

€

U∑ A j,C() / U∑∑ Ai, A j()()

Filters

H(): Entropy

B: class attribute
A: any attribute

Wrappers

1
1

l Learner-dependent (selection for specific learner)
l Wrapper around learner

l Select features, evaluate learner (e.g., cross-validation)
l Expensive

l Greedy search: O(k2) for k attributes
l When using a prior ranking (only find cut-off): O(k)

• Search attribute subset space
• E.g. weather data:

Wrappers: search

Greedy search

Forward elimination
(add one, select best)

Backward elimination
(remove one, select best)

Wrappers: search

l Other search techniques (besides greedy search):
l Bidirectional search
l Best-first search: keep sorted list of subsets, backtrack until

optimum solution found
l Beam search: Best-first search keeping only k best nodes
l Genetic algorithms: ‘evolve’ good subset by random perturbations

in list of candidate subsets
l Still expensive...

Wrappers: search

• Race search
• Stop cross-validation as soon as it is clear that feature subset is

not better than currently best one
• Label winning subset per instance (t-test)

• Stop when one subset is better
• better: significantly, or probably

• Schemata-search: idem with random subsets
• if one better: stop all races, continue with winner

outlook temp humid windy
inst1 -1 0 1 -1
inst2 0 -1 1 -1

Selecting humid results in significantly better
prediction for inst2

Wrappers: search

Preprocessing with WEKA

• Attribute subset selection:

• ClassifierSubsetEval: Use another learner as filter

• CfsSubsetEval: Correlation-based Feature Selection

• WrapperSubsetEval: Choose learner to be wrapped (with search)

• Attribute ranking approaches (with ranker):

• GainRatioAttributeEval, InfoGainAttributeEval

• C4.5-based: rank attributes by gain ratio/information gain

• ReliefFAttributeEval: kNN-based: attribute weighting

• OneRAttributeEval, SVMAttributeEval

• Use 1R or SVM as filter for attributes, with recursive feat. elim.

The ‘Select attributes’ tab

Select attribute selection
approach

Select search strategy

Select class attribute

Selected attributes or
ranked list

The ‘Select attributes’ tab

Select attribute selection
approach

Select search strategy

Select class attribute

Selected attributes or
ranked list

The ‘Preprocess’ tab

Use attribute selection
feedback to remove

unnecessary attributes
(manually)

OR: select ‘AttributeSelection’ as
‘filter’ and apply it

(will remove irrelevant attributes
and rank the rest)

Data Engineering

• Attribute selection (feature selection)
• Remove features with little/no predictive information

• Attribute discretization
• Convert numerical attributes to nominal ones

• Data transformations (feature generation)
• Transform data to another representation

• Dirty data
• Remove missing values or outliers

Attribute discretization

• Some learners cannot handle numeric data

•‘Discretize’ values in small intervals

•Always looses information: try to preserve as much as possible

• Some learners can handle numeric values, but are:

•Naive (Naïve Bayes assumes normal distrubution)

•Slow (1R sorts instances before discretization)

•Local (C4.5 discretizes in nodes, on less and less data)

• Discretization:

•Transform into one k-valued discretized attribute

•Replace with k–1 new binary attributes

• values a,b,c: a→{0,0}, b→{1,0}, c→{1,1}

Unsupervised
Discretization

l Determine intervals without knowing class labels
l When clustering, the only possible way!

l Strategies:
l Equal-interval binning: create intervals of fixed width

l often creates bins with many or
 very few examples

Unsupervised
Discretization

l Strategies:
l Equal-frequency binning:

l create bins of equal size
l also called histogram equalization

l Proportional k-interval discretization

l equal-frequency binning with
l # bins = sqrt(dataset size)

Supervised
Discretization

1
7

l Supervised approach usually works better
l Better if all/most examples in a bin have same class
l Correlates better with class attribute (less predictive info lost)

l Different approaches
l Entropy-based
l Bottom-up merging
l ...

Entropy-based
Discretization

l Split data in the same way C4.5 would: each leaf = bin
l Use entropy as splitting criterion

H(p) = – plog(p) – (1–p)log(1–p)

Outlook = Sunny:

Expected information for outlook:

Example: temperature
attribute

Play

Temperature

 Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

 64 65 68 69 70 71 72 72 75 75 80 81 83 85

info([1,0],[8,5])=0.9 bits

Example: temperature
attribute

Play

Temperature

 Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

 64 65 68 69 70 71 72 72 75 75 80 81 83 85

info([9,4],[0,1])=0.84 bits

Example: temperature
attribute

Play

Temperature

 Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

 64 65 68 69 70 71 72 72 75 75 80 81 83 85

info([9,4],[0,1])=0.84 bits

Choose cut-off with lowest information
value (highest gain)

Example: temperature
attribute

Play

Temperature

 Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

 64 65 68 69 70 71 72 72 75 75 80 81 83 85

info([9,4],[0,1])=0.84 bits

Define threshold halfway between values:
 (83+85)/2 = 84

Choose cut-off with lowest information
value (highest gain)

Play

Temperature

 Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

Repeat by further subdividing
the intervals

Optimization: only split where class changes
Always optimal (proven)

Example: temperature
attribute

 64 65 68 69 70 71 72 72 75 75 80 81 83 85

Entropy-based
Discretization

l Split data in the same way C4.5 would: each leaf = bin
l Use entropy as splitting criterion
l Use minimum description length principle as stopping criterion

l Stop when description of attribute cannot be compressed more
l Description of splitting points (log2[N – 1] bits) +

 Description of bins (class distribution)
l Short if few thresholds, homogenous (single-class) bins
l Split worthwhile if information gain >

€

log2 N −1()
N

+
log2 3

k − 2() − kE +k1E1+k2E2

N
Entropy E, number of classes k in original set (E,k),

subset before threshold (E1,k1), after threshold (E2,k2)

Supervised Discretization:
Alternatives

2
0

• Work bottom-up: each value in its own bin, then merge
• Replace MDL by chi-squared test

• Tests hypothesis that two adjacent intervals are independent
of the class. If so, merge the intervals.

• Use dynamic programming to find optimum k-way split
for given additive criterion
• Requires time quadratic in the number of instances
• Can be done in linear time if error rate is used (not entropy)

Make data numeric

l Inverse problem
l Some algorithms assume numeric features

l e.g. kNN
l Classification

l You could just number nominal values 1..k (a=0,b=1,c=2,...)
l However, there isn’t always a logical order

l Replace attribute with k nominal values by k binary attributes
(‘indicator attributes’)

l Value ‘1’ if example has nominal value corresponding to that
indicator attribute, ‘0’ otherwise: A→{1,0}, B→{0,1}

A
a
b

Aa Ab
1 0
0 1

Make data numeric

l Regression
l Value = average of all target values corresponding to same

nominal attribute value

A target
a 0.9
a 0.8
b 0.7
b 0.6

A’ target
0.85 0.9
0.85 0.8
0.65 0.7
0.65 0.6

•Discretization:

• Unsupervised:

• Discretize: Equal-width or equal-frequency

• PKIDiscretize: equal-frequency with
#bins=sqrt(#values)

• Supervised:

• Discretize: Entropy-based discretization

Discretization with Weka

•Nominal to numerical:

• Supervised:

• NominalToBinary: for regression (use
average target value)

• Unsupervised:

• MakeIndicator: replaces nominal with
boolean attribute

• NominalToBinary: creates 1 binary attribute
for each value

Discretization with Weka

WEKA: Discretization
Filter

Select (un)supervised >
attribute > Discretize

Data Engineering

• Attribute selection (feature selection)
• Remove features with little/no predictive information

• Attribute discretization
• Convert numerical attributes to nominal ones

• Data transformations (feature generation)
• Transform data to another representation

• Dirty data
• Remove missing values or outliers

Data transformations

• Often, a data transformation can lead to new insights in the
data and better performance

• Simple transformations:
• Subtract two ‘date’ attributes to get ‘age’ attribute
• If linear relationship is suspected between numeric attributes A

and B: add attribute A/B

• Clustering the data
• add one attribute recording the cluster of each instance
• add k attributes with membership of each cluster

Data transformations

• Other transformations:
• Add noise to data (to test robustness of algorithm)
• Obfuscate the data (to preserve privacy)

l Convert text to table data
l Bag of words:

♦ Each instance is a document or string
♦ Attributes are words, phrases, n-grams (e.g., `to be’)
♦ Attribute values: term frequencies (fij)

♦ frequency of word i in document j

Document fi(to) fi(be) fi(or) fi(not)
`To be or not to be’ 2 2 1 1

`Or not’ 0 0 1 1

Data transformations

• Better alternatives: log(1+fij) or TFxIDF
(term frequency x inverse document frequency)=

€

fijlog
documents

documents_ that _ include_word i

Document fi(to) fi(be) fi(or) fi(not)
`To be or not to be’ 2 2 1 1

`Or not’ 0 0 1 1

l Language-dependent issues:
l Delimiters (ignore periods in ‘e.g.’?)
l Stopwords (the, is, at, which, on, ...)
l Low frequency words (ignore to reduce # features)

Data transformations

Data transformation
filters

Select unsupervised >
attribute > …

Some WEKA
implementations

• Simple transformations:
• AddCluster: clusters data and adds attribute with resulting

cluster for each data point
• ClusterMembership: clusters data and adds k attributes with

membership of each data point in each of k clusters
• AddNoise: changes a percentage of attribute’s values
• Obfuscate: renames attribute names and nominal/string

values to random name

Some WEKA
implementations

• Other transformations
• StringToWordVector: produces bag of words (many options)
• RELAGGS: propositionalization algorithm: converts

relational data (e.g. relational database) to single table
• TimeSeriesDelta: Replace attribute values with difference

between current and past/previous instance
• TimeSeriesTranslate: Replace attribute values with

equivalent value in past/previous instance

Some WEKA
implementations

• Also data projections (out of scope):
• PrincipalComponents: does PCA transformation (constructs

new (smaller) feature set to maximize variance per feature)
• RandomProjection: Random projection to lower-dimensional

subspace
• Standardize: standardizes all numeric attributes to have zero

mean and unit variance

Data Engineering

• Attribute selection (feature selection)
• Remove features with little/no predictive information

• Attribute discretization
• Convert numerical attributes to nominal ones

• Data transformations (feature generation)
• Transform data to another representation

• Dirty data
• Remove missing values or outliers

Some data `cleaning’
methods in WEKA

• Unsupervised > Instance:
• RemoveWithValues: removes instances with certain value and/

or with missing values
• RemoveMisclassified: removes instances incorrectly classified

by specified classifier, useful for removing outliers
• RemovePercentage: removes given percentage of instances

• Supervised > Instance:
• Resample: produces random subsample, with replacement
• SpreadSubSample: produces random subsample, with given

spread between class frequencies, with replacement

Some data `cleaning’
methods

• Unsupervised > Attribute:
• ReplaceMissingValues: replaces all missing values for

nominal /numeric attributes with mode/mean of training data

