Data Engineering

Data preprocessing and transformation

JUST APPLY A LEARNER? NO!

• Algorithms are *biased*

- No free lunch theorem: considering all possible data distributions, no algorithm is better than another
- Algorithms make *assumptions* about data
 - Conditionally independent features (naive Bayes)
 - All features relevant (e.g., kNN, C4.5)
 - All features discrete (e.g., 1R)
 - Little/no noise (many regression algorithms)
 - Little/no missing values (e.g., PCA)
- Given data:
 - Choose / adapt algorithm to data (selection / parameter tuning)
 - Adapt data to algorithm (data engineering)

DATA ENGINEERING

- Attribute selection (feature selection)
 - Remove features with little/no predictive information
- Attribute discretization
 - Convert numerical attributes to nominal ones
- Data transformations (feature generation)
 - Transform data to another representation
- Dirty data
 - Remove missing values or outliers

IRRELEVANT FEATURES CAN 'CONFUSE' ALGORITHMS

- kNN: curse of dimensionality
 - # training instances required increases exponentially with # (irrelevant) attributes
 - Distance between neighbors increases with every new dimension
- C4.5: data fragmentation problem
 - select attributes on less and less data after every split
 - Even random attributes can look good on small samples
 - Partially corrected by pruning
- Naive Bayes: redundant (very similar) features
 - Features clearly not independent, probabilities likely incorrect
 - But, Naive Bayes is insensitive to irrelevant features (ignored)

ATTRIBUTE SELECTION

- Other benefits
 - Speed: irrelevant attributes often slow down algorithms
 - Interpretability: e.g. avoids huge decision trees
- 2 types:
 - Feature Ranking: rank by relevancy metric, cut off
 - Feature Selection: search for optimal subset

ATTRIBUTE SELECTION

- 2 approaches (besides manual removal):
 - Filter approach: Learner independent, based on data properties or simple models built by other learners

$$\bigcirc \rightarrow \qquad filter \qquad \rightarrow \bigcirc \rightarrow \qquad learner$$

• Wrapper approach: Learner dependent, rerun learner with different attributes, select based on performance

- Basic: find smallest feature set that separates data
 - Expensive, often causes overfitting
- Better: use another learner as filter
 - Many models show importance of features
 - e.g. C4.5, 1R, kNN, ...
 - Recursive: select 1 attribute, remove, repeat
 - Produces ranking: cut-off defined by user

Using C4.5

- select feature(s) tested in top-level node(s)
- · `Decision stump' (1 node) sufficient

Using 1R

select the 1R feature, repeat

Using kNN: weigh features by capability to separate classes

- same class: reduce weight of features with ≠ value (irrelevant)
- other class: increase weight of features with ≠ value (relevant)

Different classes:

increase weight of $a_1 \propto d_1$

increase weight of $a_2 \propto d_2$

 $\mathbf{1}_{2}$

Using Linear regression (simple or logistic)

Select features with highest weights

Filters

- Direct filtering: use data properties
 - Correlation-based Feature Selection (CFS)

$$U(A,B) = 2 \frac{H(A) + H(B) - H(A,B)}{H(A) + H(B)} \in [0,1]$$

H(): Entropy A: any attribute B: class attribute

- Select attributes with high class correlation, little intercorrelation
- Select subset by aggregating over attributes A_j for class C
 - Ties broken in favor of smaller subsets

$$\sum U(A_j, C) / \sqrt{\left(\sum \sum U(A_i, A_j)\right)}$$

• Fast, default in WEKA

WRAPPERS

- Learner-dependent (selection for specific learner)
- Wrapper around learner
 - Select features, evaluate learner (e.g., cross-validation)
- Expensive
 - Greedy search: O(k²) for k attributes
 - When using a prior ranking (only find cut-off): O(k)

- Other search techniques (besides greedy search):
 - Bidirectional search
 - Best-first search: keep sorted list of subsets, backtrack until optimum solution found
 - Beam search: Best-first search keeping only k best nodes
 - Genetic algorithms: 'evolve' good subset by random perturbations in list of candidate subsets
 - Still expensive...

Race search

- Stop cross-validation as soon as it is clear that feature subset is not better than currently best one
- Label winning subset per instance (t-test)

	outlook	temp	humid	windy
inst ₁	-1	0	1	-1
inst ₂	0	-1	1	-1

Selecting humid results in significantly better prediction for inst₂

- Stop when one subset is better
 - better: significantly, or probably
- Schemata-search: idem with random subsets
 - if one better: stop all races, continue with winner

PREPROCESSING WITH WEKA

- Attribute subset selection:
 - ClassifierSubsetEval: Use another learner as filter
 - CfsSubsetEval: Correlation-based Feature Selection
 - WrapperSubsetEval: Choose learner to be wrapped (with search)
- Attribute ranking approaches (with ranker):
 - GainRatioAttributeEval, InfoGainAttributeEval
 - C4.5-based: rank attributes by gain ratio/information gain
 - ReliefFAttributeEval: kNN-based: attribute weighting
 - OneRAttributeEval, SVMAttributeEval
 - Use 1R or SVM as filter for attributes, with recursive feat. elim.

THE 'SELECT ATTRIBUTES' TAB

THE 'SELECT ATTRIBUTES' TAB

THE 'PREPROCESS' TAB

O O O Wek	a Explorer	
Preprocess Classify Cluster	Associate Select attribu	utes Visualize
Open file Open URL Open DB Ge Filter Choose AttributeSelection - E "weka.attributeSelect Current relation Relation: autos Instances: 205 Attributes: 26 Attributes	nerate Undo tion.CfsSubsetEval " -S " Selected attribute Name: num-of-d Missing: 2 (1%)	Use attribute selection feedback to remove unnecessary attributes (manually)
Attributes	1 four	114
All None Invert Pattern No. Name 1 normalized-losses 1 normalized-losses 2 make 3 fuel-type 4 aspiration 5 num-of-doors 6 body-style	(will ren	filter' and apply it nove irrelevant attributes and rank the rest)
7 drive-wheels 8 engine-location 9 wheel-base 10 length 11 width Remove	114	89
Status OK		Log x 0

DATA ENGINEERING

- Attribute selection (feature selection)
 - Remove features with little / no predictive information
- Attribute discretization
 - Convert numerical attributes to nominal ones
- Data transformations (feature generation)
 - Transform data to another representation
- Dirty data
 - Remove missing values or outliers

ATTRIBUTE DISCRETIZATION

- Some learners cannot handle numeric data
 - 'Discretize' values in small intervals
 - Always looses information: try to preserve as much as possible
- Some learners can handle numeric values, but are:
 - Naive (Naïve Bayes assumes normal distrubution)
 - Slow (1R *sorts* instances before discretization)
 - · Local (C4.5 discretizes in nodes, on less and less data)
- · Discretization:
 - Transform into one k-valued discretized attribute
 - Replace with *k*-1 new **binary** attributes
 - values a,b,c: $a \rightarrow \{0,0\}, b \rightarrow \{1,0\}, c \rightarrow \{1,1\}$

UNSUPERVISED DISCRETIZATION

- Determine intervals without knowing class labels
 - When clustering, the only possible way!
- Strategies:
 - Equal-interval binning: create intervals of fixed width
 - often creates bins with many or very few examples

UNSUPERVISED DISCRETIZATION

- Strategies:
 - Equal-frequency binning:
 - create bins of equal size
 - also called histogram equalization
 - Proportional k-interval discretization
 - equal-frequency binning with
 - # bins = sqrt(dataset size)

SUPERVISED DISCRETIZATION

- Supervised approach usually works better
 - Better if all/most examples in a bin have same class
 - Correlates better with class attribute (less predictive info lost)
- Different approaches
 - Entropy-based
 - Bottom-up merging

ENTROPY-BASED DISCRETIZATION

- Split data in the same way C4.5 would: each leaf = bin
- Use entropy as splitting criterion

 $H(p) = -p\log(p) - (1-p)\log(1-p)$

Outlook = Sunny:

 $info([2,3]) = entropy(2/5,3/5) = -2/5\log(2/5) - 3/5\log(3/5) = 0.971$ bits

Expected information for outlook: info([3,2],[4,0],[3,2]) = $(5/14) \times 0.971 + (4/14) \times 0 + (5/14) \times 0.971$ = 0.693 bits

ENTROPY-BASED DISCRETIZATION

Split data in the same way C4.5 would: each leaf = bin

- Use entropy as splitting criterion
- Use minimum description length principle as stopping criterion
 - Stop when description of attribute cannot be compressed more
 - Description of splitting points (log₂[N 1] bits) +

Description of bins (class distribution)

- Short if few thresholds, homogenous (single-class) bins
- Split worthwhile if information gain >

$$\frac{\log_2(N-1)}{N} + \frac{\log_2(3^k-2) - kE + k_1E_1 + k_2E_2}{N}$$

Entropy E, number of classes k in original set (E,k),
ubset before threshold (E₁,k₁), after threshold (E₂,k₂)

SUPERVISED DISCRETIZATION: ALTERNATIVES

- Work bottom-up: each value in its own bin, then merge
 - Replace MDL by chi-squared test
 - Tests hypothesis that two adjacent intervals are independent of the class. If so, merge the intervals.
- Use dynamic programming to find optimum k-way split for given additive criterion
 - Requires time quadratic in the number of instances
 - Can be done in linear time if error rate is used (not entropy)

MAKE DATA NUMERIC

- Inverse problem
- Some algorithms assume numeric features
 - e.g. kNN
- Classification
 - You could just number nominal values 1..k (a=0,b=1,c=2,...)
 - However, there isn't always a logical order
 - Replace attribute with k nominal values by k binary attributes ('indicator attributes')
 - Value '1' if example has nominal value corresponding to that indicator attribute, '0' otherwise: $A \rightarrow \{1,0\}, B \rightarrow \{0,1\}$

MAKE DATA NUMERIC

Regression

 Value = average of all target values corresponding to same nominal attribute value

А	target		A'	target
a	0.9		0.85	0.9
a	0.8	\rightarrow	0.85	0.8
b	0.7		0.65	0.7
b	0.6		0.65	0.6

DISCRETIZATION WITH WEKA

- Discretization:
 - Unsupervised:
 - **Discretize**: Equal-width or equal-frequency
 - PKIDiscretize: equal-frequency with #bins=sqrt(#values)
 - Supervised:
 - Discretize: Entropy-based discretization

DISCRETIZATION WITH WEKA

- Nominal to numerical:
 - Supervised:
 - NominalToBinary: for regression (use average target value)
 - Unsupervised:
 - MakeIndicator: replaces nominal with boolean attribute
 - NominalToBinary: creates 1 binary attribute for each value

WEKA: DISCRETIZATION

FILTER

😝 🔿 🔿 🛛 Weka f	Explorer
Preprocess Classify Cluster As	ssociate Select attributes Visualize
Open file Open URL Open DB Gene	rate Undo Edit Save
Filter	
Choose Discretize -R first-last	Apply
Relation: None Instances: None Attributes: None	Name: None Type: None Missing: None Distinct: None Unique: None
Attributes All None Invert Pattern	
	Select (un)supervised > attribute > Discretize
Remove	

Status Welcome to the

Welcome to the Weka Explorer

× 0

DATA ENGINEERING

- Attribute selection (feature selection)
 - Remove features with little / no predictive information
- Attribute discretization
 - Convert numerical attributes to nominal ones
- Data transformations (feature generation)
 - Transform data to another representation
- Dirty data
 - Remove missing values or outliers

- Often, a data transformation can lead to new insights in the data and better performance
- Simple transformations:
 - Subtract two 'date' attributes to get 'age' attribute
 - If linear relationship is suspected between numeric attributes A and B: add attribute A/B
- Clustering the data
 - add one attribute recording the cluster of each instance
 - add k attributes with membership of each cluster

- Other transformations:
 - Add noise to data (to test robustness of algorithm)
 - Obfuscate the data (to preserve privacy)

- Convert text to table data
 - Bag of words:
 - Each instance is a document or string
 - Attributes are words, phrases, n-grams (e.g., `to be')
 - Attribute values: term frequencies (*f*_{ii})
 - frequency of word i in document j

Document	$f_i(to)$	$f_i(be)$	$f_i(\text{or})$	$f_i(not)$
`To be or not to be'	2	2	1	1
`Or not'	0	0	1	1

documents

 $f_{ij}\log\frac{1}{\# documents_that_include_word i}$

Document	$f_i(to)$	f_i (be)	$f_i(\text{or})$	$f_i(\text{not})$
`To be or not to be'	2	2	1	1
`Or not'	0	0	1	1

- Language-dependent issues:
 - Delimiters (ignore periods in 'e.g.'?)
 - Stopwords (the, is, at, which, on, ...)
 - Low frequency words (ignore to reduce # features)
- Better alternatives: log(1+f_{ij}) or TFxIDF
 (term frequency x inverse document frequency)=

DATA TRANSFORMATION FILTERS

00			Weka	Explorer		
P	reprocess	Classify Clu	uster A	ssociate Select at	tributes Visualize]
Open file Op	en URL)	Open DB	Gene	erate Undo	Edit	Save
Filter						
Choose Discreti	ze -R first-	last				Apply
Current relation Relation: None Instances: None	Att	ributes: None		Selected attribute Name: None Missing: None	Distinct: None	Type: None Unique: None
Attributes						
	ne	Invert Pi	attern			
All No	ne	Invert P	attern	Select at	unsupe tribute	ervised > >

Welcome to the Weka Explorer

SOME WEKA IMPLEMENTATIONS

- Simple transformations:
 - AddCluster: clusters data and adds attribute with resulting cluster for each data point
 - **ClusterMembership**: clusters data and adds k attributes with membership of each data point in each of k clusters
 - AddNoise: changes a percentage of attribute's values
 - **Obfuscate**: renames attribute names and nominal/string values to random name

SOME WEKA IMPLEMENTATIONS

- Other transformations
 - StringToWordVector: produces bag of words (many options)
 - **RELAGGS**: propositionalization algorithm: converts relational data (e.g. relational database) to single table
 - **TimeSeriesDelta**: Replace attribute values with difference between current and past/previous instance
 - **TimeSeriesTranslate**: Replace attribute values with equivalent value in past/previous instance

SOME WEKA IMPLEMENTATIONS

- Also data projections (out of scope):
 - **PrincipalComponents**: does PCA transformation (constructs new (smaller) feature set to maximize variance per feature)
 - RandomProjection: Random projection to lower-dimensional subspace
 - **Standardize**: standardizes all numeric attributes to have zero mean and unit variance

DATA ENGINEERING

- Attribute selection (feature selection)
 - Remove features with little / no predictive information
- Attribute discretization
 - Convert numerical attributes to nominal ones
- Data transformations (feature generation)
 - Transform data to another representation
- Dirty data
 - Remove missing values or outliers

SOME DATA CLEANING' METHODS IN WEKA

- Unsupervised > Instance:
 - RemoveWithValues: removes instances with certain value and / or with missing values
 - **RemoveMisclassified**: removes instances incorrectly classified by specified classifier, useful for removing outliers
 - **RemovePercentage**: removes given percentage of instances
- Supervised > Instance:
 - **Resample**: produces random subsample, with replacement
 - **SpreadSubSample**: produces random subsample, with given spread between class frequencies, with replacement

SOME DATA CLEANING' METHODS

- Unsupervised > Attribute:
 - **ReplaceMissingValues**: replaces all missing values for nominal / numeric attributes with mode / mean of training data