

Subgroup Discovery

- Classification: model the dependence of the target on the remaining attributes.
 - problem: sometimes uses only some of the available dependencies, or classifier is a black-box.
 - for example: in decision trees, some attributes may not appear because of overshadowing.

- Classification: model the dependence of the target on the remaining attributes.
 - problem: sometimes uses only some of the available dependencies, or classifier is a black-box.
 - for example: in decision trees, some attributes may not appear because of overshadowing.
- Exploratory Data Analysis: understanding the effects of all attributes on the target.

- Classification: model the dependence of the target on the remaining attributes.
 - problem: sometimes uses only some of the available dependencies, or classifier is a black-box.
 - for example: in decision trees, some attributes may not appear because of overshadowing.
- Exploratory Data Analysis: understanding the effects of all attributes on the target.

Q: How can we use ideas from C4.5 to approach this task?

- Classification: model the dependence of the target on the remaining attributes.
 - problem: sometimes uses only some of the available dependencies, or classifier is a black-box.
 - for example: in decision trees, some attributes may not appear because of overshadowing.
- Exploratory Data Analysis: understanding the effects of all attributes on the target.
- Q: How can we use ideas from C4.5 to approach this task?

A: Why not list the info gain of all attributes, and rank according to this?

Universiteit Leider

Interactions between Attributes

- Single-attribute effects are not enough
- XOR problem is extreme example: 2 attributes with no info gain form a good model

Apart from

consider also

 $A=a \land B=b, A=a \land C=c, ..., B=b \land C=c, ...$ $A=a \land B=b \land C=c, ...$

Subgroup Discovery Task

"Find all subgroups within the inductive constraints that show a significant deviation in the distribution of the target attribute"

- Inductive constraints:
 - Minimum support
 - (Maximum support)
 - Minimum quality (Information gain, X², WRAcc)
 - Maximum complexity

- A confusion matrix (or contingency table) describes the frequency of the four combinations of subgroup and target:
 - within subgroup, positive
 - within subgroup, negative
 - outside subgroup, positive

- High numbers along the TT-FF diagonal means a positive correlation between subgroup and target
- High numbers along the TF-FT diagonal means a negative correlation between subgroup and target
- Target distribution on DB is fixed

- High numbers along the TT-FF diagonal means a positive correlation between subgroup and target
- High numbers along the TF-FT diagonal means a negative correlation between subgroup and target
- Target distribution on DB is fixed

- High numbers along the TT-FF diagonal means a positive correlation between subgroup and target
- High numbers along the TF-FT diagonal means a negative correlation between subgroup and target
- Target distribution on DB is fixed

- High numbers along the TT-FF diagonal means a positive correlation between subgroup and target
- High numbers along the TF-FT diagonal means a negative correlation between subgroup and target
- Target distribution on DB is fixed

- High numbers along the TT-FF diagonal means a positive correlation between subgroup and target
- High numbers along the TF-FT diagonal means a negative correlation between subgroup and target
- Target distribution on DB is fixed

Quality Measures

A *quality measure* for subgroups summarizes the interestingness of its confusion matrix into a single number

WRAcc, weighted relative accuracy

- $WRAcc(S,T) = p(ST) p(S) \cdot p(T)$
- between –.25 and .25, 0 means uninteresting
- Balance between coverage and unexpectedness

Quality Measures

- WRAcc: Weighted Relative Accuracy
- Information gain
- X²
- Correlation Coefficient
- Laplace
- Jaccard
- Specificity

Т

Refinements are (anti-) monotonic in their support...

Refinements are (anti-) monotonic in their support...

...but not in interestingness. This may go up or down.

Subgroup Discovery and ROC space

ROC Space

ROC = Receiver Operating Characteristics

TPR = TP/Pos = TP/TP+FN (fraction of positive cases in the subgroup) FPR = FP/Neg = FP/FP+TN (fraction of negative cases in the subgroup)

ROC Space Properties

ROC Space Properties

ROC Space Properties

Measures in ROC Space

WRAcc

Information Gain

Measures in ROC Space

Other Measures

Universiteit Leiden

Universiteit Leiden

Gini index

Refinements of S will reduce the FPR and TPR, so will appear to the left and below S.

Refinements of S will reduce the FPR and TPR, so will appear to the left and below S.

Refinements of S will reduce the FPR and TPR, so will appear to the left and below S.

Blue polygon represents possible refinements of S. With a convex measure, *f* is bounded by measure of corners.

Refinements of S will reduce the FPR and TPR, so will appear to the left and below S.

Blue polygon represents possible refinements of S. With a convex measure, *f* is bounded by measure of corners.

If corners are not above minimum quality or current best (top *k*?), prune search space below S.

Multi-class problems

Generalising to problems with more than 2 classes is fairly staightforward:

Multi-class problems

Generalising to problems with more than 2 classes is fairly staightforward:

 Target is numeric: find subgroups with significantly higher or lower average value

- Target is numeric: find subgroups with significantly higher or lower average value
- Trade-off between size of subgroup and average target value

Q: Assume you have found a subgroup with a positive WRAcc (or infoGain). Can any refinement of this subgroup be negative?

Q: Assume you have found a subgroup with a positive WRAcc (or infoGain). Can any refinement of this subgroup be negative?

A: Yes.

Q: Assume you have found a subgroup with a positive WRAcc (or infoGain). Can any refinement of this subgroup be negative?

A: Yes.

Q: Assume both A and B are uninteresting subgroups. Can the subgroup A $_{\wedge}$ B be an interesting subgroup?

Q: Assume both A and B are uninteresting subgroups. Can the subgroup A \wedge B be an interesting subgroup?

A: Yes.

Q: Assume both A and B are uninteresting subgroups. Can the subgroup A \wedge B be an interesting subgroup?

A: Yes.

Q: Assume both A and B are uninteresting subgroups. Can the subgroup A \wedge B be an interesting subgroup?

A: Yes.

Q: Assume both A and B are uninteresting subgroups. Can the subgroup A \wedge B be an interesting subgroup?

A: Yes.

Q: Assume both A and B are uninteresting subgroups. Can the subgroup A \wedge B be an interesting subgroup?

A: Yes.

Q: Assume both A and B are uninteresting subgroups. Can the subgroup A \wedge B be an interesting subgroup?

A: Yes.

Q: Can the combination of two positive subgroups ever produce a negative subgroup?

Q: Can the combination of two positive subgroups ever produce a negative subgroup?

Q: Can the combination of two positive subgroups ever produce a negative subgroup?

Q: Can the combination of two positive subgroups ever produce a negative subgroup?

Q: Can the combination of two positive subgroups ever produce a negative subgroup?

Q: Can the combination of two positive subgroups ever produce a negative subgroup?

