## Subgroup Discovery

## Exploratory Data Analysis

## Exploratory Data Analysis

- Classification: model the dependence of the target on the remaining attributes.
- problem: sometimes uses only some of the available dependencies, or classifier is a black-box.
- for example: in decision trees, some attributes may not appear because of overshadowing.


## Exploratory Data Analysis

- Classification: model the dependence of the target on the remaining attributes.
- problem: sometimes uses only some of the available dependencies, or classifier is a black-box.
- for example: in decision trees, some attributes may not appear because of overshadowing.
- Exploratory Data Analysis: understanding the effects of all attributes on the target.


## Universiteit Leiden

## Exploratory Data Analysis

- Classification: model the dependence of the target on the remaining attributes.
- problem: sometimes uses only some of the available dependencies, or classifier is a black-box.
- for example: in decision trees, some attributes may not appear because of overshadowing.
- Exploratory Data Analysis: understanding the effects of all attributes on the target.

Q: How can we use ideas from C4.5 to approach this task?

## Universiteit Leiden

## Exploratory Data Analysis

- Classification: model the dependence of the target on the remaining attributes.
- problem: sometimes uses only some of the available dependencies, or classifier is a black-box.
- for example: in decision trees, some attributes may not appear because of overshadowing.
- Exploratory Data Analysis: understanding the effects of all attributes on the target.

Q: How can we use ideas from C4.5 to approach this task?

A: Why not list the info gain of all attributes, and rank according to this?

## Universiteit Leiden

## Interactions between Attributes

- Single-attribute effects are not enough
- XOR problem is extreme example: 2 attributes with no info gain form a good model
- Apart from
$A=\mathrm{a}, B=\mathrm{b}, C=\mathrm{c}, \ldots$
- consider also
$A=\mathrm{a} \wedge B=\mathrm{b}, A=\mathrm{a} \wedge C=\mathrm{c}, \ldots, B=\mathrm{b} \wedge C=\mathrm{c}, \ldots$
$A=\mathrm{a} \wedge B=\mathrm{b} \wedge C=\mathrm{c}, \ldots$


## Subgroup Discovery Task

"Find all subgroups within the inductive constraints that show a significant deviation in the distribution of the target attribute"

- Inductive constraints:
- Minimum support
- (Maximum support)
- Minimum quality (Information gain, $X^{2}$, WRAcc)
- Maximum complexity


## Confusion Matrix

- A confusion matrix (or contingency table) describes the frequency of the four combinations of subgroup and target:
" within subgroup, positive
- within subgroup, negative
" outside subgroup, positive



## Confusion Matrix

- High numbers along the TT-FF diagonal means a positive correlation between subgroup and target
- High numbers along the TF-FT diagonal means a negative correlation between subgroup and target
- Target distribution on DB is fixed



## Confusion Matrix

- High numbers along the TT-FF diagonal means a positive correlation between subgroup and target
- High numbers along the TF-FT diagonal means a negative correlation between subgroup and target
- Target distribution on DB is fixed



## Confusion Matrix

- High numbers along the TT-FF diagonal means a positive correlation between subgroup and target
- High numbers along the TF-FT diagonal means a negative correlation between subgroup and target
- Target distribution on DB is fixed



## Confusion Matrix

- High numbers along the TT-FF diagonal means a positive correlation between subgroup and target
- High numbers along the TF-FT diagonal means a negative correlation between subgroup and target
- Target distribution on DB is fixed



## Confusion Matrix

- High numbers along the TT-FF diagonal means a positive correlation between subgroup and target
- High numbers along the TF-FT diagonal means a negative correlation between subgroup and target
- Target distribution on DB is fixed



## Quality Measures

A quality measure for subgroups summarizes the interestingness of its confusion matrix into a single number

WRAcc, weighted relative accuracy

- $\operatorname{WRAcc}(\mathrm{S}, \mathrm{T})=p(\mathrm{ST})-p(\mathrm{~S}) \cdot p(\mathrm{~T})$
- between -. 25 and .25, 0 means uninteresting
- Balance between coverage and unexpectedness



## Universiteit Leiden

## Quality Measures

- WRAcc: Weighted Relative Accuracy
- Information gain
- $X^{2}$
- Correlation Coefficient
- Laplace
- Jaccard
- Specificity


## Subgroup Discovery as Search

## Subgroup Discovery as Search



## Subgroup Discovery as Search



## Subgroup Discovery as Search



## Subgroup Discovery as Search



## Subgroup Discovery as Search



## Subgroup Discovery as Search



## Subgroup Discovery as Search



## Subgroup Discovery as Search



## Refinements are (anti-)monotonic



Refinements are (anti-) monotonic in their support...

## Refinements are (anti-)monotonic



Refinements are (anti-) monotonic in their support...
...but not in interestingness. This may go up or down.

## Subgroup Discovery and ROC space



## ROC Space

ROC $=$ Receiver Operating Characteristics


Each subgroup forms a point in ROC space, in terms of its False Positive Rate, and True Positive Rate.

TPR = TP/Pos = TP/TP+FN (fraction of positive cases in the subgroup) FPR $=\mathrm{FP} / \mathrm{Neg}=\mathrm{FP} / \mathrm{FP}+\mathrm{TN}$ (fraction of negative cases in the subgroup)

## ROC Space Properties



## Measures in ROC Space




## Measures in ROC Space



isometric

## Other Measures

Precision


Correlation coefficient


Gini index


Universiteit Leiden

## Refinements in ROC Space



## Refinements in ROC Space



Refinements of $S$ will reduce the FPR and TPR, so will appear to the left and below S .

## Refinements in ROC Space



Refinements of $S$ will reduce the FPR and TPR, so will appear to the left and below S .

## Refinements in ROC Space



Refinements of $S$ will reduce the FPR and TPR, so will appear to the left and below S .

Blue polygon represents possible refinements of $S$. With a convex measure, $f$ is bounded by measure of corners.

## Refinements in ROC Space



Refinements of $S$ will reduce the FPR and TPR, so will appear to the left and below S .

Blue polygon represents possible refinements of $S$. With a convex measure, $f$ is bounded by measure of corners.

If corners are not above minimum quality or current best (top $k$ ?), prune search space below S .

## Combining Two Subgroups



## Multi-class problems

- Generalising to problems with more than 2 classes is fairly staightforward:



## Multi-class problems

- Generalising to problems with more than 2 classes is fairly staightforward:



## Numeric Subgroup Discovery



## Numeric Subgroup Discovery



## Numeric Subgroup Discovery

- Target is numeric: find subgroups with significantly higher or lower average value



## Numeric Subgroup Discovery

- Target is numeric: find subgroups with significantly higher or lower average value
- Trade-off between size of subgroup and average target value

Quiz 1

## Quiz 1

Q: Assume you have found a subgroup with a positive WRAcc (or infoGain). Can any refinement of this subgroup be negative?

## Quiz 1

Q: Assume you have found a subgroup with a positive WRAcc (or infoGain). Can any refinement of this subgroup be negative?

A: Yes.

## Quiz 1

Q: Assume you have found a subgroup with a positive WRAcc (or infoGain). Can any refinement of this subgroup be negative?

A: Yes.


## Quiz 2



## Quiz 2

Q: Assume both $A$ and $B$ are uninteresting subgroups. Can the subgroup $A \wedge B$ be an interesting subgroup?


## Quiz 2

Q: Assume both $A$ and $B$ are uninteresting subgroups. Can the subgroup $A \wedge B$ be an interesting subgroup?

A: Yes.


## Quiz 2

Q: Assume both $A$ and $B$ are uninteresting subgroups. Can the subgroup $A \wedge B$ be an interesting subgroup?

A: Yes.
Think of the $X O R$ problem. $A \wedge B$ is either completely positive or negative.


## Quiz 2

Q: Assume both $A$ and $B$ are uninteresting subgroups. Can the subgroup $A \wedge B$ be an interesting subgroup?

A: Yes.
Think of the $X O R$ problem. $A \wedge B$ is either completely positive or negative.


## Quiz 2

Q: Assume both $A$ and $B$ are uninteresting subgroups. Can the subgroup $A \wedge B$ be an interesting subgroup?

A: Yes.
Think of the $X O R$ problem. $A \wedge B$ is either completely positive or negative.


## Quiz 2

Q: Assume both $A$ and $B$ are uninteresting subgroups. Can the subgroup $A \wedge B$ be an interesting subgroup?

A: Yes.
Think of the $X O R$ problem. $A \wedge B$ is either completely positive or negative.


## Quiz 2

Q: Assume both $A$ and $B$ are uninteresting subgroups. Can the subgroup $A \wedge B$ be an interesting subgroup?

A: Yes.
Think of the $X O R$ problem. $A \wedge B$ is either completely positive or negative.


## Quiz 3



## Quiz 3

Q: Can the combination of two positive subgroups ever produce a negative subgroup?


## Quiz 3

Q: Can the combination of two positive subgroups ever produce a negative subgroup?

A: Yes.


## Quiz 3

Q: Can the combination of two positive subgroups ever produce a negative subgroup?

A: Yes.


## Quiz 3

Q: Can the combination of two positive subgroups ever produce a negative subgroup?

A: Yes.


## Quiz 3

Q: Can the combination of two positive subgroups ever produce a negative subgroup?

A: Yes.


## Quiz 3

Q: Can the combination of two positive subgroups ever produce a negative subgroup?

A: Yes.


