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Preface

This workshop is dedicated to the proposition that insight often begins with unexpected results. Successful
methods do not simply fall from the sky: they are discovered based on clues gathered by trying several
ideas, learning from surprising results, and building an understanding of what works, what does not, and
why.

Unexpected results chart the boundaries of our knowledge: they identify errors, reveal false assumptions,
and force us to dig deeper. When a system works we focus on its input/output behavior, but only when a
problem occurs, we examine the underlying mechanisms to understand what went wrong.

Unfortunately, this process is rarely mentioned in the machine learning and data mining discourse, mean-
ing that this insight is essentially lost. Ironically, while we have long understood that learning from only
positive results is substantially harder than learning from both positives and negatives, there exists a publi-
cation bias that favours (incremental) successes over novel discoveries of why some ideas, while intuitive
and plausible, do not work.

Good science consists of carefully designed experiments, systematic procedures, and honest evaluations. It
is not mandatory for the results to be positive, only that they provide a deeper understanding of the field.
As a scientific area where empirical methods dominate, it is a given that people try many ideas and obtain
surprising results in the experimental stage. This may be due to lack of rigor, but often there are deeper,
unexpected, and intriguing reasons. We can learn a lot if we analyze scientifically why an intuitive and
plausible experiment did not work as expected.

Just as every cloud has a silver lining, these unexpected results define the actual boundaries of our field:
they highlight what we do not yet understand, and often point to interesting and open problems that ought
to be explored.

With this workshop, we want to give a voice to those unexpected results that deserve wider dissemination.
These proceedings consist of 4 interesting contributions with shine a light on the value of unexpected re-
sults. These include stories that highlight the road to success: how a successful method was discovered after
one or several failed attempts, as well as papers that question the way we currently perform and evaluate
research and propose ways to improve on it.

We thank everybody for their sincere interest and their contributions, and especially thank our invited
speakers:

Olivier Teytaud (Université Paris-Sud): Unexpected Results in Monte-Carlo Tree Search.
Albrecht Zimmermann (University of Leuven): Science - we might be doing it wrong.

We hope you will find it an interesting and inspiring workshop, leading to great new collaborations.

Leiden, September 2012
Joaquin Vanschoren
Wouter Duivesteijn
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Adventures in Feature Selection on an IndustrialDataset
...and Ensuing General Discoveries

(Extended Abstract)

George Forman
HP Labs, Palo Alto, CA, USA

Abstract. We relate the story of an interesting failure of text feature
selection methods on an industrial dataset of technical documents. Our
detailed dissection and ultimate understanding of the failure led to the
creation of general solutions that not only solved the robustness problem
we faced, but were also able to improve classification accuracy for simpler,
public datasets, which was crucial to enable the works’ publishability.[1]

1 The Story

We were developing some simple text classification software for a Hewlett-Packard
business division that wanted to sort a large collection of internal tech-support
documents into various topic categories. Their previous rule-based system had,
over the years, grown hard to maintain and was perceived as having poor accu-
racy. The rules consisted of over 8000 lines for English documents alone, contain-
ing several types of pattern matching, many variants of product names including
third-party software, and prioritized, hierarchical Boolean logic for categoriza-
tion into 100+ topics. This was the old state-of-the-art. Given an emailed report
of some misclassified documents, it was quite difficult for the rule maintainers
(different domain experts for different product lines) to know what to change
about the many rules. Plus, any changes might lead to new misclassifications,
damaging overall accuracy. It was hard to know, and at the time there were no
ground-truth labels recorded from which we could measure its accuracy...nor try
out a machine learning solution.

We pushed for machine learning, with hopes for better accuracy and a much
easier way to improve the system whenever misclassified documents are found—
just add them to the training set and retrain. Encouraged, the division worked
with their domain experts to provide us a sample dataset of 10 classes, each with
about 100 documents, on which we could develop our software and see how its
accuracy compared with the existing solution.

This was, we thought, a simple multi-class (single-label) problem, to which we
were applying straightforward techniques: traditional Naive Bayes with a bag-of-
words vector representation of the text. Though feature extraction is conceptu-
ally simple, we had to make some hard decisions about whether ‘-’ and ‘/’ were
punctuation or word characters: they were used in many technical names, such
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2 George Forman

as ‘HP-UX’, ‘MPE/XL’, and ‘FDDI/9000’, and in many part numbers, such as
‘C3166-69017’—but of course, there were many situations where they were better
thought of as punctuation. We found that feature selection improved classifica-
tion accuracy substantially, and we believed it would eventually be important for
scalability on the full-size problem. We experimented with highly scalable feature
filtering methods using Mutual Information, Chi-Squared, or Information Gain,
promoted by publications such as Yang and Pedersen [2]. After cross-validation
tests, we determined to ship the software using Information Gain to the internal
division. Everything had gone smoothly...so far.

1.1 The Persistent Failure

After we delivered the software to the division, they slowly built up their la-
beled training set for over 230 technical topics. At first the classifications looked
rather poor, but we had expected this initially and knew that acquiring addi-
tional training labels was necessary. Through discussions, we found some classes
were trained inadequately, e.g. collecting its training documents by searching
for only a single keyword or two, providing little diversity to learn from. At
some point, their persistent perception of its poor results moved us to look for
a problem. We first re-tested their use of our software on our sample data to
verify its correct operation. After some delay, we were able to obtain a copy
of their training data in order to reproduce the problem locally and perform
cross-validation. Looking into the features selected, we saw oceans of unfamiliar
technical words (e.g. s700 800, PHCO 3238, MIRRORDISK/UX, PHKL 1921),
which seemed reasonable enough with our lack of knowledge about the large-scale
domain problem. It took awhile for us to notice that words we might reasonably
expect to find were missing, e.g. JETDIRECT or JETADMIN. We verified that
such features did occur in the labeled training documents, and that the feature
extraction routines did offer them. We found that the feature selection algorithm
consistently threw them out, even if we wildly increased the number of selected
features. We tested other feature selection functions and tried adjusting vari-
ous parameters, such as the rare word cutoff and an assortment of choices for
Laplace correction. We tried programming an assortment of additional methods
for feature selection from the literature: different functions as well as different
ways of aggregating them over classes. In measuring the Information Gain of a
feature, one can alternatively measure it separately for each class vs. all others,
and then aggregate the measurements for each of the 230+ classes in various
ways: average, maximum, etc. Nothing worked to bring in the expected features.
Perhaps they weren’t such good features as we had thought, since every method
refused to include them.

1.2 The Root Cause

It is rather difficult to scrutinize a confusion matrix from cross-validation with
over 230 classes, but with some effort, we drew our attention to a class that was
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Adventures in Feature Selection on Industrial Datasets 3

nicely accurate. Perhaps we might find a clue if we found out what was differ-
ent about this class? It contained reports of standard HP/UX patch bundles.
These documents looked somewhat unusual to our inexperienced eye, and they
contained listings of many inscrutable patch names that were included or super-
seded by the current focus patch bundle. As a result, many early patch names
occurred in many of the documents for this class. These made for excellently
predictive features that rarely occurred in the other classes. Aha! Because there
were incredibly many of these strong features, their excellent Information Gain
scores—by whatever method we used—consistently crowded out most of the
highly predictive features needed to distinguish other classes. Who would have
thought that an abundance of good features available should be a problem?

1.3 The Solution

Clearly, the Information Gain scores of those patch features were excellent, but
there was another selection criterion we needed to add: some notion of fairness.
A difficult class with only weakly predictive features available would still need to
get some of its best features selected, even if they had Information Gain scores
that were completely uncompetitive with the scores of other features for other
classes. This led to the development of the SpreadFx algorithm family [1], which
is highly scalable and includes the idea of round-robin feature selection, giving
each class (proportionate to its need or importance) equal chances to nominate
features to be included. This gave good performance and proved much more
robust for selecting features on such odd datasets. But there’s more to the story.

1.4 The Research Path to its Eventual Publication

Though the solution was quite useful to us for this and other asymmetric clas-
sification tasks—and perhaps useful to others facing such anomalous datasets—
would it be publishable? We suspected and confirmed that reviewers would balk
at publishing our ‘heuristic’ and ‘ad hoc’ solution to such an ‘atypical’ problem,
which ‘should have treated the odd class separately to begin with.’ Of course, this
is perhaps good advice if you can afford to tailor the solution for each dataset.
We regretted to be informed that our submission, though interesting, was not
expected to be ‘workable in other datasets.’ Naturally, benchmark classification
sets from UCI and elsewhere didn’t exhibit such weird asymmetries, so there
appeared to be little call for a method to treat it. Or was there?

To investigate its value more broadly, we had to go deeper: We suspected
that even with typical, symmetric datasets, there would always be some classes
that are easier than others, and that the feature selection phase could help the
classifier by making sure to collect plenty of features for the difficult classes. We
constructed an artificially balanced, 36-class dataset of computer science topics
such that it had exactly the same number of documents in each class. Even on
such an abnormally symmetric dataset, the difficulty of the individual classes
varied, some having much better features available than others, as shown in the
Figure 1 (reproduced from [1]). Using this dataset, we were able to show that
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Figure 1.  Baseline precision, recall and F-measure performance for each class of the Cora dataset.  The 36 classes each have 50 
training examples and are ordered here by their F-measure.  The classifier—SVM on 500 features selected by Information 
Gain—obtained 50% accuracy (& F-measure) overall.   
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Figure 1.  Information Gain scores of top features. Each column corresponds to one class (sorted by F-measure).  We plot 
the local Information Gain of each feature in distinguishing that class from all other classes.  Additionally, we indicate the
top global Information Gain scores via point shapes, e.g. large diamonds mark features included in the global top 25 features. 
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F-Measure 
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Figure 1 details the results.  For each class, the whisker 
plot shows the precision (bent end), recall (straight end) 
and F-measure (round marker).  The classes are sorted by 
their F-measure. Scanning the whiskers, we see that some 
classes have a wide discrepancy between their precision 
and recall.   

The overall macro-average F-measure is 50%, indicated 

by the round marker on the y-axis. This is equivalent to 
the micro-averaged F-measure, because the class 
distribution is uniform. Micro-averaged F-measure is a 
per-document measure, so it is heavily influenced by 
larger classes, while macro-averaged F-measure gives 
equal weight to each class regardless of size. Since 
smaller classes tend to be harder to classify and there tend 
to be more of them than larger classes, the macro-

 

 

in this case because the class distribution is uniform.)   In 
this experiment, we achieved an overall F-measure of 
61.2%, up 22% from the previous baseline of 50% for 
traditional IG.  (We repeated this experiment for Naïve 
Bayes and saw a similar improvement of 12% overall.) 

Table 1.  Benchmark Datasets 

Dataset Source Docs Words Classes
Cora Whizbang 1800 5171 36 
fbis TREC 2463 2000 17 
La1 TREC 3204 31472 6 
La2 TREC 3075 31472 6 
Oh0 OHSUMED 1003 3182 10 
Oh5 OHSUMED 918 3012 10 
Oh10 OHSUMED 1050 3238 10 
Oh15 OHSUMED 913 3100 10 
ohscal OHSUMED 11162 11465 10 
Re0 Reuters 1504 2886 13 
Re1 Reuters 1657 3758 25 
tr11 TREC 414 6429 9 
tr12 TREC 313 5804 8 
tr21 TREC 336 7902 6 
tr23 TREC 204 5832 6 
tr31 TREC 927 10128 7 
tr41 TREC 878 7454 10 
tr45 TREC 690 8261 10 
wap WebACE 1560 8460 20 

 

4.1  Improvement over all 19 Datasets 

Next we present an evaluation over a large classification 
benchmark to test the merit of SpreadFx applied to the 
widely practiced IG and CHI methods. Certainly as we 
increase the number of features to a very large number, 

any feature selection algorithm will begin to provide 
many predictive features for all classes. So the primary 
hypothesis to test is whether the benefit of SpreadFx is 
beneficial at smaller numbers of selected features. That 
said, we would also like to see a gain for larger numbers 
of features selected. 
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             Figure 2.  F-measure achieved by SpreadFx[ Round-Robin, IG ] (at arrow tip) vs. the traditional IG (at arrow tail). 

IG

SpreadFx[ Round-Robin, IG ] 

For the induction algorithm, we chose the multi-class 
Support Vector Machine (SVM), as it is considered 
among the best in class for text classification, and quite 
popular (e.g. Yang & Liu, 1999; Joachims, 1998). We 
initially expected that it would be difficult to improve 
SVM results. To show that the results are not particular to 
SVM, we also demonstrate similar improvement for the 
traditional Naïve Bayes classifier, which is more highly 
sensitive to feature selection. 

We performed our evaluations on the Cora dataset, plus 
18 other text datasets provided by Han and Karypis 
(2000). Refer to Table 1. The classification tasks are 
drawn from standard benchmarks such as Reuters, 
OHSUMED, and TREC, among others. The datasets 
range from M=6 to 36 classes, 2,000 to 31,000 binary 
features, and have uneven class distributions with a 
median of 1 positive to 17 negative training examples 
(and average 1:31). No class is duplicated in different 
datasets. For a detailed exposition of the datasets, please 
refer to their paper or else Forman (2003). We will gladly 
make the feature vectors available on request.  

For each dataset and feature selection scheme, we 
perform 4-fold cross-validation runs, obtaining the macro-
averaged F-measure across all the classes of the dataset.  
We then average these results across five random 
stratified cross-validation splits for each of the 19 
datasets.  (The results for accuracy and even micro-

 

SpreadFx improved the classification accuracy for most of the classes (Figure 2),
resulting in a not insubstantial gain overall. The performance advantage for this
unnaturally balanced dataset and 18 more normal datasets finally persuaded
reviewers that the method was worth publishing.

2 Conclusions

There are three main take-away messages, each for a different audience. For data
mining practitioners, there is the useful result of the SpreadFx algorithm [1] for
robust, performant, and scalable multi-class feature selection. Additionally, the
anecdote reminds us that we need to test our systems in settings and on datasets
that are as realistic as possible; simplified versions may not reveal serious, lurk-
ing problems. For individual researchers, we need to get our hands on real-world,
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Adventures in Feature Selection on Industrial Datasets 5

unsimplified datasets and tasks in order to discover those problems and to drill
down into them to gain useful insights for innovation. For the broader research
community, we face a persistent issue that it is difficult to publish failures or to
publish results on proprietary datasets. Reviewers far prefer elegant work on a
conceptually simple problem with improvements demonstrated on public bench-
marks for reproducible science. But these simpler problems and public datasets
are limited in scope and usually exclude the messy, real-world structure that
comes with many interesting and worthwhile problems. Consider the SpreadFx
work: what reviewer would take seriously a test problem concocted from public
datasets with 100 topic classes plus one extremely different class, say, German
documents? The work was only made publishable because it could also demon-
strate gains for normal, public datasets as well. Yet it has a robustness benefit
that is needed for at least some real-world business problems. For the ongoing
progress of our science, we increasingly need to face real-world, sometimes messy
datasets and, where important new problems are exposed, to accept publication
on datasets that will not be publicly available.
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Abstract: Scientific theories may be defined as ‘deep, principled explanations 
of phenomena’. For Computer Science, there are two types of possible theories: 
mathematical theories and empirical theories. Mathematical theories are 
founded in mathematical formalism while empirical theories are generated 
through hypothesis generation, experiment design, collection of experimental 
results and analysis of these results. It has been observed in the machine 
learning literature that many problems in machine learning will only be solved 
through empirical studies, and not through mathematical formulations. The 
generation of empirical theories is therefore an important activity for machine 
learning and data mining research. This paper provides an account of how a 
method for the design of ensemble base models was invented. The method, 
called positive-versus-negative (pVn) classification, provides ensemble 
classifiers with a high level of predictive performance. The paper discusses how 
experimentation with one-versus-all (OVA) classification and the unexpected 
negative results for OVA ensemble classification eventually led to the invention 
of pVn classification. This was realised through the systematic application of 
the steps of the scientific method and the design-science research paradigm. 
The paper also discusses how some unexpected negative results on pVn 
classification made it possible to formulate empirical theories on pVn 
classification. 

Keywords: positive-versus-negative classification, one-versus-all 
classification, ensemble classification, scientific method, design-science 
research,  empirical theories. 

1. Introduction 
It is generally accepted that scientific theories form the foundations of scientific 
knowledge. March and Smith [1] have defined theories as ‘deep, principled 
explanations of phenomena’. Cohen [2] has argued that theories may also be 
‘propositions from which we can derive testable hypotheses’. Simon [3] has observed 
that, in general, there are two types of theories for Computer Science: mathematical 
theories and empirical theories. Mathematical theories are founded in mathematical 
formalism while empirical theories are generated through hypothesis generation, 
experiment design, collection of experimental results and analysis of these results [2]. 
Simon [3] has argued that there are many aspects of computer systems that are so 
complex that there are no feasible mathematical theories that can be developed to 

10



 2 

describe their design and behaviour. The formulation of empirical theories is therefore 
an important aspect of Computer Science research. 

Specific to machine learning and data mining, the mathematical theories we 
employ largely originate from Computer Science and Statistics [4], and Operations 
Research [5]. Dietterich [6] has observed that many problems in machine learning 
will only be solved through empirical studies, and not through mathematical 
formulations. Cohen [2] has provided comprehensive guidelines on how to conduct 
empirical research in artificial intelligence and how to generate empirical theories 
from the empirical studies. According to Cohen [2] progress in science is gradually 
achieved by moving from descriptions of specific systems to predictive theories and 
finally to explanatory theories that provide causal explanations for systems in general.  

The purpose of this paper is to provide an account of how I discovered an 
effective ensemble classification modeling method for multiclass prediction tasks, 
through experimentation and observation. I named this method positive-versus-
negative (pVn) classification [7], [8]. pVn classification is a modification of one-
versus-all (OVA) classification so that each base model specializes in the prediction 
of a subset of classes, instead of just one class, as is the case for OVA classification. 
Empirical enquiry is not an exact science. The researcher hypothesises that given a 
design and implementation of an artifact based on a set of theories, then a certain 
outcome / behaviour of the artifact should be realised. However, this is not always the 
case. The point I make in this paper is as follows: By following the steps of the 
design-science  research paradigm [1] for empirical research, I was able to convert 
negative experimental results into positive outcomes. I demonstrate this by giving an 
account of how negative results for studies on OVA classification [7], [9], [10] were 
converted into positives that led me to the invention of pVn classification. I also 
demonstrate how further negative experimental results on pVn classification led to the 
formulation and refinement of a predictive theory for the effective application of pVn 
classification. 

The rest of this paper is organised as follows: Section 2 provides a discussion 
of theory building and design-science research. Section 3 provides a summary of the 
theories that I used as a basis for the research activities. Sections 4 and 5 respectively 
give a brief discussion of the experimental studies on OVA and pVn ensemble 
classification. The theory that I have formulated on pVn classification is presented in 
Section 6. Section 7 concludes the paper. 

2. Theory building and design-science research 
As stated above, empirical theories are generated through hypothesis generation, 
experiment design, collection of experimental results and analysis of these results. 
The research activities reported in this paper were conducted through the design-
science research paradigm [1] and the scientific method [11], [12]. The scientific 
method of Peirce and Popper [11], [12] was followed for purposes of building 
theories based on empirical studies. This method involves observation, hypothesis 
generation, experiment design, and testing the validity of the hypotheses. Design-
science research is a research paradigm that is commonly used in Information 
Systems research [1], [13] and Operations Research research activities [14]. Design-
science [3] and design-science research [1] are concerned with the design and study of 
artifacts. Hevner et al. [13] have provided the following definition for Information 
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Systems artifacts: ‘.. innovations that define ideas, practices, technical capabilities, 
and products, through which the analysis, design, implementation, and use of 
information systems can be effectively and efficiently accomplished.’ 

Design-science research involves two distinct steps. In the first step, an 
artifact is created. In the second step, an analysis of the usage and performance of the 
artifact is conducted. The purpose of the analysis is to understand, explain, and 
possibly improve on one or more aspects of the artifact [15]. According to Hevner et 
al [13], in the context of information systems, artifacts may be models (abstractions 
and representations), methods (algorithms and practices) and instantiations 
(implemented and prototype systems). The outputs of design-science research are 
constructs, models, methods, instantiations of methods, and better theories. Scientific 
research is about generating knowledge. For design-science research new knowledge 
is generated in terms of the new constructs, new models, new methods (the how-to 
knowledge), and the better theories that arise out of the design and evaluation 
activities. Constructs are the core vocabulary that is used to express the concepts of a 
field. Knowledge is created when statements or propositions are made to express the 
relationships between various constructs of the field. Better theories, in terms of the 
models, will result if the models are rigorously tested in order to establish the 
existence of the relationships.  

The discussions provided in this paper are primarily concerned with three of 
the outputs of design-science research namely, methods, instantiations and theories. 
The methods presented are concerned with the design of pVn classification models. 
Instantiations are concerned with the construction and testing of the pVn models to 
demonstrate their effectiveness. The theory that is presented is a predictive theory on 
how to effectively apply pVn classification.  

3. Existing theories and methods that were used for the research  
The design activity for design-science research starts with the consultation of the 
knowledge base of the field in order to obtain those models, methods and theories that 
can guide the design of the proposed artifact. This section provides a brief discussion 
of the machine learning and statistical pattern recognition theories that were used as a 
basis for the empirical studies discussed in this paper. Section 3.1 discusses 
discriminative classification. The probably approximately correct (PAC) theory is 
summarised in section 3.2. Section 3.3 discusses the sources of classification error. 
Ensemble classification is summarised in Section 3.4. The no free lunch (NFL) 
theorems for machine learning are discussed in Section 3.5. 

3.1 Discriminative classification  
There are two well accepted conceptual views of classification, namely: 
discriminative classification [16] and generative classification. For discriminative 
classification [16], a classification model provides a mapping f, from an instance x 
= )x...,x( d1 in the d-dimensional instance space to a set of classes }.c,...,c{ k1  The d-
dimensional instance space is viewed as consisting of regions with labels for each of 
the k classes. The mapping, f, defines the various regions of the instance space. For 
each class ic , the union of all the regions with that class label is called the decision 
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region for the class. The mapping may also be interpreted as a definition of the 
decision boundaries between the decision regions. Hand et al [16] have defined a 
decision boundary between two classes ic and jc as a ‘contour’ or ‘surface’ in the 

instance space which has 50.),c(P),c(P jrir == xx  where ),c(P ir x  is the 

probability that instance x has the class label ic  and ),( xjr cP  is the probability that 

instance x has the class label jc . The notion of decision boundaries for  discrete 

classification was used as a guide for the design of OVA and pVn base models 
discussed in this paper. The overriding design objective was to use a large number of 
training instances that reside in the decision boundary regions of the instance space 
for the prediction task [7], [8], [9]. 

3.2 Probably approximately correct theory 
The probably approximately correct (PAC) theoretical model of learning proposed by 
Valiant [17] and discussed by Mitchell [18] has been designed for purposes of 
characterising algorithms that learn target concepts by generating a hypothesis h from 
a set H of all possible hypotheses that belong to some concept class. The learning 
algorithms use training instances drawn at random according to some unknown, but 
fixed, probability distribution. PAC is concerned with the identification of classes of 
hypotheses that can and cannot be learned from a polynomial number of instances. 
Within the PAC theory various measures of hypothesis space complexity have been 
proposed for purposes of establishing bounds (sample complexity) for the number of 
training instances required for achieving a given level of accuracy for inductive 
learning algorithms. For the studies reported in this paper, the PAC sample 
complexity theories provided the important insight that, given a prediction task and a 
training sample size, a classification model which is designed to predict a small 
number of classes should achieve a higher level of accuracy compared to a model 
which is designed to predict a large number of classes. 

3.3 Sources of error in predictive classification 
The prediction error of a classification model has been decomposed into three 
components namely bias, variance and intrinsic error [19], [20], 21], [22]. The bias 
of a predictive model reflects how closely, on average, the (estimated) predictive 
model is able to approximate the target function. Bias reflects the error in the 
estimation process for the model and is due to the algorithm or inference method as 
well as the domain for the modeling task [16], [19], [20], 21], [22], [23]. The variance 
reflects the sensitivity of the (estimated) predictive model to the training sample that 
is used to create the model. Low variance means that the (estimated) model is more 
stable to the variations introduced by sampling to obtain the training data [16], [20], 
[23]. The third component of the prediction error is called intrinsic error [19], [20], 
21]. This is the irreducible component of the prediction error. Various researchers 
have observed that bias errors can be reduced through the use of simple models and 
through boosting. Boosting [23] is the practice of directing the greatest effort towards 
the most difficult aspects of the modeling problem. It has also been observed in the 
literature that variance error may be reduced through the reduction of model 
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complexity through the use of simple models which are combined through 
aggregation [7], [8], [25]. 

3.4 Ensemble classification  
Ensemble classification [24] also known as model aggregation [25] is a modeling 
method that provides classification models with a high level of predictive 
performance. Several researchers have argued that syntactic diversity of base models 
leads to a higher level of predictive accuracy for the aggregate model [24], [26], [27], 
[28]. Several researchers have also argued that a higher level of predictive 
performance may be achieved by making each member of the aggregate model as 
competent as possible [27], [28]. Furthermore, Freund and Schapire [29] have 
demonstrated that boosting results in ensembles with high predictive performance. 
The theories on bias and variance errors, base model syntactic diversity, competence 
and boosting were used for the research reported in this paper to guide the design of 
the base models for OVA and pVn ensemble classifiers. Each base model in an OVA 
ensemble was created from a different training set. Each base model in a pVn 
ensemble was also created from a different training set. 

3.5 No free lunch theorems for machine learning 
In general, no single method can be claimed to be suitable for all datasets and for all 
algorithms [3], [31]. Schaffer [30] has argued that no single strategy for machine 
learning is better at generalisation (prediction) than all other strategies for all problem 
domains. Wolpert [31] has conducted studies on noise-free datasets, and has 
demonstrated through the no free lunch theorems for machine learning that all 
algorithms are equivalent on average, in terms of predictive performance. The 
important lesson we learn from these theorems is that it is useful to define (whenever 
possible) the class of problems for which a proposed machine learning algorithm or 
method  is expected to be effective. The predictive theory reported in this paper were 
generated for this purpose. 

4. Studies of OVA classification 
As stated in Section 1, the idea of pVn classification came to me while I was 
conducting experimental studies on OVA classification. In this section, I briefly 
discuss the OVA experimental activities in chronological order. Section 4.1 and 4.2 
respectively provide a discussion of OVA and boosted OVA experimental results. 

4.1 OVA classification  
One-Versus-All (OVA) classification is a method where a k-class prediction task is 
decomposed into k 2-class sub-problems. One OVA base model is constructed for 
each sub-problem and the OVA base models are then combined into one ensemble 
model [10].  Typically, the same training dataset is used for all the base models. The 
only difference between the base model training datasets is that in each training set 
the instances for class ci have class label ci for base model OVAi while the instances 
for all the other classes have class label ‘other’. 
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Based on the PAC theory, the theory on bias-variance decomposition, 
syntactic diversity theory, and boosting, I hypothesised that when large quantities of 
data are available for training, OVA classification can be used to improve predictive 
performance. I used two large datasets: forest cover type and KDD Cup 1999 [32] and 
two classification algorithms: 5NN [33] and See5 [34] to create OVA classification 
ensembles. Each OVA base model was created from a different training set. The 
details of the experiments that were conducted and the analysis of the results have 
been reported in [7] and [9]. A summary of the results is given in Table 1. Columns 3 
to 6 provide the conclusions for the experiments based on discrete classification and 
probabilistic classification [35]. The results indicate that the method I proposed for 
the design of OVA ensemble base models from large datasets worked well for the 
5NN algorithm, but did not provide any improvements for the See5 algorithm. 

Table 1: Summary of the conclusions from the OVA modeling experiments 

Discrete classification Probabilistic classification  
 
 
Dataset 

 
 
 
Algorithm 

Does mean 
accuracy 
increase? 

#classes with 
increased 
TPRATE 

Does mean 
AUC 
increase? 

#classes with 
increased 
AUC 

5NN yes 5 yes 5 Forest cover 
type See5 no 1 no 3 

5NN yes 2 yes 2 KDD Cup 
1999 See5 no 2 no 2 

4.2 Boosted OVA classification 
Since OVA classification worked well only for the 5NN algorithm, I concluded that 
this must be a no-free-lunch phenomenon, that is, the approach I had used for OVA 
classification was not suitable for all algorithms. I further hypothesised that if the 
theory of boosting was applied, this could lead to improved performance for the See5 
OVA ensembles. Boosting was conducted as follows: For each OVA base model, the 
training dataset was composed of instances for the positive class and the negative 
instances were for those classes that a single model commonly confuses with the 
positive class. The negative classes were identified by studying the confusion 
matrices for the single model. This decision was made based on the theory for 
discriminative classification. As an example, the (combined) confusion matrix (for 
five test sets) for the forest cover type dataset is given in Table 2. To avoid 
overfitting, I generated five confusion matrices for a (dataset, algorithm) combination, 
and then created a combined matrix.  

As an example of base model boosting,  the training dataset for the boosted 
OVA1 base model for the forest cover type dataset was composed of instances for 
class 1 (positive instances) and negative instance were for the classes 2 and 7. The 
reason for this was that since class 1 gets frequently confused with classes 2 and 7, a 
model with a large number of training instances from only classes 1, 2, and 7 should 
provide a classification algorithm with a large amount of relevant data to be able to 
distinguish between class 1 and the negative classes 2 and 7. The details of the 
boosted OVA experiments have also been reported in [7] and [9]. A summary of the 
results is given in Table 3. One can see that while boosting worked for the forest 
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cover type models for both the 5NN and See5 algorithm, it did not work well for the 
KDD Cup 1999 dataset. Also, the performance improvements for the forest cover 
dataset were very small. Again, I concluded that the no-free-lunch phenomenon was 
the reason for the lack of performance improvement. In other words, boosting works 
well only for some (domain, algorithm) combinations. 

Table 2: Confusion matrix for See5 classification tree single 7-class model for forest cover 
type (training set size = 12000, test set = 250 per class) 

Predicted class Actual 
class Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 
Class 1  60   3 2 38 
Class 2 43  5  32 8 8 
Class 3    26 11 50  
Class 4   6     
Class 5  17 6   6  
Class 6  4 30 23 3   
Class 7 16       

 

Table 3: Summary of the conclusions from the boosted OVA modeling experiments 

Discrete classification Probabilistic classification  
 
 
Dataset 

 
 
 
Algorithm 

Does mean 
accuracy 
increase? 

#classes with 
increased 
TPRATE 

Does mean 
AUC 
increase? 

#classes with 
increased 
AUC 

5NN yes 6 yes 6 Forest 
cover type See5 yes 3 yes 5 

5NN no 0 yes 2 KDD Cup 
1999 See5 no 2 no 2 

5. Studies of pVn classification 
In this section I provide an account of how I moved from boosted OVA classification 
to pVn classification. pVn classification [7], [8]  involves the decomposition of a k-
class prediction task into j (j < k) sub-problems. One base model is constructed for 
each sub-problem to predict a subset of the k classes. The base models are then 
combined into one ensemble model for prediction. The classes that the model can 
predict are called the positive classes or p-classes. The other classes that are included 
in the training data for the model are called negative classes or n-classes. The reasons 
for the derivation of confusion graphs from confusion matrices are discussed in 
Section 5.1. Section 5.2 provides a brief discussion of the preliminary theories that I 
formulated for pVn classification. Section 5.3 provides a discussion of the activities I 
am currently involved in. These activities are concerned with studies on whether pVn 
classification is effective for datasets with large numbers of classes. 
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5.1 From confusion matrices to confusion graphs  
I further hypothesised that using more than one positive class in a model could lead to 
performance improvements compared to the use of just one positive class. In other 
words, a model should concurrently learn the decision boundaries of all the classes 
that were used in the boosted OVA model. For example, a model with positive classes 
1, 2 and 7 could provide better performance compared to the boosted OVA 
counterpart. Here, I was still using the PAC theory (simple models) and boosting 
theory (concentrate most effort on the difficult aspects for classification). The first 
task was to identify groups of positive classes for each base model. After staring at 
confusion matrices for a while, I became confused! I decided to use a more graphical 
representation of a matrix. A graph was an obvious choice since I was looking for 
adjacency of class decision regions in the instance space. In computation we 
commonly use an adjacency matrix as a data structure for representing a graph. So, I 
invented the confusion graph [7], [8]. An example of a confusion graph is given in 
Fig. 1. Each class is represented by one node in the graph. An arc between two nodes 
indicates that there is confusion between the classes shown in the nodes. The arc label 
shows the confusion count given in the matrix. The value in brackets in each node 
gives the level of connectivity for the node. 
 

 
Fig. 1: Confusion matrix and confusion graph for a hypothetical classifier (adopted from [36]) 

I designed a manual (pen-and-pencil) algorithm for analysing a confusion 
graph to identify the base models and base model classes. This algorithm is described 
in detail in [7] and [8]. Manual application of the algorithm was made possible due to 
the fact that the datasets I studied initially had a moderate number of classes: five 
classes for the KDD Cup 1999 dataset and seven classes for the forest cover type 
dataset. I used the same datasets as for the Section 4 experiments to test the merits of 
pVn classification.  I found that pVn classification provided performance 
improvements for both the forest cover type dataset and the KDD Cup 1999 dataset 
for the 5NN and See5 algorithms [7], [8]. The classification performance results are 
summarised in Table 4. 
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Table 4: Summary of the conclusions from the pVn modeling experiments 

Discrete classification Probabilistic classification  
 
Dataset 

 
 
Algorithm 

Does mean 
accuracy 
increase? 

#classes with 
increased 
TPRATE 

Does mean 
AUC 
increase? 

#classes with 
increased 
AUC 

5NN yes 4 yes 7 Forest cover 
type See5 yes 3 yes 6 

5NN yes 4 yes 4 KDD Cup 
1999 See5 yes 3 yes 4 

5.2 Preliminary theory for pVn classification 
In the process of experimentation I realised that pVn modeling is made possible when 
the confusion matrix of the single k-class model has a high level of sparsity, that is, 
when there is a large number of off-diagonal cells with zero counts. Based on the 
empirical studies that I conducted, I concluded that pVn classification is effective 
when the sparsity level is between 40% and 60%. Table 5 provides a summary of the 
sparsity level of the confusion matrices that were used as a basis for pVn base model 
design. 

Table 5: Summary of confusion matrix properties (adopted from [8] )  

Dataset 
(number of 
classes) 

Number of off-
diagonal cells in 
confusion matrix   

 
Algorithm 

Sparsity count 
(cells with  
count  < 5) 

Percentage  
level of sparsity 

5NN 23 57% Forest cover type  
(7 classes) 

42 
See5 25 60% 
5NN 10 50% KDD Cup 1999 

(5 classes) 
20 

See5 8 40% 
  
During experimentation I came to realise that even when the confusion matrix has a 
high level of sparsity, it may be the case that each node in the corresponding 
confusion graph has a (in-going or out-going) arc to every other node in the graph. 
This was the case for example, for the KDD Cup 1999 dataset and the See5 algorithm. 
It then became necessary to further simplify the confusion graph as discussed in [7] 
and [8]. 

5.3 Studies on a dataset with a large number of classes 
Given the foregoing observations, I hypothesised that pVn classification should 
especially be useful for datasets with a large number of classes (e.g. > 20 classes). I 
used the letter recognition dataset from the UCI machine learning repository [32] to 
conduct experiments to investigate if there was merit in this hypothesis. When a 
dataset has a large number of classes, it is infeasible to manually apply the pVn base 
model design algorithm as I had applied it previously. I therefore created a new 
version of the algorithm and implemented it in Borland C++ builder. The algorithm 
directly processes the confusion matrices. I created a training dataset of 10,400 
training instances and 1,820 validation instances, and five test (holdout) sets each 
with 1,820 instances using stratification and simple random sampling to achieve a 
balanced class distribution. I created an ANN MLP [37] classification model using the 
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IBM SPSS version 20 and generated five confusion matrices using the five test sets. 
The five confusion matrices were used as input to the pVn base model design 
algorithm which outputs the base model specifications. The combined confusion 
matrix that was generated by the algorithm and used for the base model design 
specification is given in the appendix. Since I used five confusion matrices, I again 
initially used a cut-off value of 5, so that the algorithm interpreted any matrix cell 
with a count of less than five as a blank cell. Row 2 of Table 5 gives a summary of the 
pVn model specifications that were produced by the algorithm for a cut-off value of 5. 
One can see that, on average, each model should be trained on data for 23 out of 26 
classes. This was an unexpected outcome. Two questions then arose: (1) Is it 
necessary to elaborately select the negative classes, or can the model simply use all 
the classes that are not p-classes as the n-classes? (2) Would a higher value for the 
cut-off point result in a reduced number of identified n-classes?  The use of higher 
values for the cut-off point resulted in a reduction of the number of n-classes, but then 
exposed another potential problem. Rows 3 and 4 of Table 6 provide a summary of 
the pVn model specifications that were produced by the algorithm for cut-off values 
of 10 and 20. The main problem is that there are thirteen classes that are not included 
in any base model specification when a cut-off value of 20 is used.  This is 50% of the 
letter recognition classes.  

Table 6: Effect of cut-off value on base model specifications 

Cut-off value Number 
of models 

Average number of p-classes 
and n-classes per model 

Comments 

5 22 p-classes:    6,  n-classes:   17 large number of n-classes 

10 22 p-classes:   4,  n-classes:   6 moderate number of n-classes 

20 10 p-classes:   2,  n-classes:   2 (1)small number of n-classes 
(2) 13 classes do not appear as 
a p-class in any model 

 
To answer the first question posed above, I created one of the pVn base 

models whose specification was produced using a cut-off value of 5. This base model 
has 5 positive classes (p-classes): {A, D, J, K, Q, S} and 17 negative classes (n-
classes): {B,H,I,N,O,R,X,Z,C,G,F,L,T,E,Y,U,P}. The first implementation of this 
model (version 1) used the specified n-classes as the negative classes while the second 
implementation (version 2) used all the classes that are not p-classes as the negative 
classes. The classification results for the single k-class model and the two versions of 
the pVn base model are given in Table 7. One can see that both versions of the pVn 
base model do not provide significant predictive performance improvements 
compared to the single k-class model. When the pVn base models cannot provide 
performance improvements on the individual classes compared to the single mode, it 
is not possible for the pVn ensemble to provide improved performance [7]. 

A comparison of the letter recognition confusion matrix (given in the 
appendix) revealed that there is a big difference in the distribution of the confusion 
counts across the matrix, compared to the confusion matrices for the forest cover type 
and KDD Cup 1999 datasets. As an example, the confusion matrix given in Table 2, 
for forest cover type and the See5 algorithm, shows that there are many cells with 
counts that are much larger than the counts which appear in the other cells. In 
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contrast, the letter recognition confusion matrix contains many small counts that 
appear almost everywhere in the matrix. I measured the sparsity level of the letter 
recognition confusion matrix (using a cut-off value of 5) and found it to be: 77%.  
This result by itself could not provide a clear indication as to why the pVn base model 
design did not work well for the letter recognition dataset. I conducted a statistical 
analysis of the confusion matrices in order to establish the nature of the distribution of 
the counts in the matrix cells. I used the Gini index of heterogeneity [23] for this 
purpose. Given a qualitative variable X with L levels and n observations for the 
variable, a statistical measure of heterogeneity summarises the level of distribution of 
the n observations among the L levels. Null heterogeneity means that all the n 
observations have the same level for X. Maximum heterogeneity means that the 
observations are uniformly (equally) distributed among the L levels. The Gini index 
of heterogeneity is defined as [23] 

�
=

−=
L

i
ipGini

1

21       (1) 

where n/)i(countpi =  is the proportion of observations that have level i. This index 
takes on values in the interval [0,1]. For a confusion matrix, I treated each row of the 
matrix as a qualitative variable where each cell in the row corresponds to one level of 
the variable. I computed the Gini index of heterogeneity for each matrix row and 
summarised the results as shown in Table 8. The results of Table 8 indicate that the 
level of heterogeneity in the confusion matrices for forest cover type and KDD Cup 
1999 (for which pVn classification worked well) is much lower than the heterogeneity 
for the letter recognition dataset. The conclusion that I made from this observation 
was that the level of heterogeneity in the confusion matrix counts determines whether 
pVn classification can be used successfully for a given dataset and algorithm. 

Table 7: Classification results for one letter recognition pVn base model 

Class true positive rate TPRATE% and 95% CI of mean for:  
Class Single model pVn base model version 1 pVn base model version 2 

A 88.6 ± 1.8 82.8 ± 2.3 88.3 ± 2.7 
D 87.7 ± 1.4 86.3 ± 4.4 87.7 ± 1.4 
J 77.9 ± 1.9 74.3 ± 5.1 82.5 ± 2.2 
K 72.9 ± 3.7 45.1 ± 9.7 69.7 ± 3.0 
Q 75.2 ± 4.8 78.8 ± 4.9 78.3 ± 2.8 
S 64.6 ± 2.1 12.3 ± 19.2 66.0 ± 3.2 

Table 8: Levels of heterogeneity for confusion matrices 

Gini index of heterogeneity Dataset 
(classes) 

Algorithm 
Minimum Maximum Mean  Heterogeneity is: 

5NN 0.46 0.71 0.58 medium Forest cover type 
(7 classes) See5 0.00 0.67 0.42 low 

5NN 0.12 0.55 0.38 low KDD Cup 1999 
(5 classes) See5 0.18 0.59 0.33 low 
Letter recognition 
(26 classes) 

ANN 
MLP 

0.67 0.91 0.85 high 
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6. Summary of the current predictive theory for pVn classification 
To date, I have conducted experiments for pVn classification on two large datasets 
(forest cover type and KDD Cup 1999), one medium sized dataset (letter recognition) 
and one small dataset (wine quality). I have used four algorithms namely: 5NN, See5 
CART and ANN MLP for the experiments. I have found that pVn classification 
provides performance improvements in all cases except for the letter recognition 
dataset. The no free lunch theorems for machine learning tell us that no single method 
can be claimed to be suitable for all datasets and for all algorithms [31]. At this point 
in my research activities on pVn classification I have formulated a number of 
empirical predictive theories specifying the characteristics of problems for which  
pVn classification should provide performance improvements. I have identified these 
characteristics based on the positive results and negative results that I  obtained 
through experimentation. The predictive theories are as follows: 

 
Condition 1: If a multiclass prediction task has more than four classes and less than 
ten classes, then pVn classification may provide performance improvements. 
Condition 2: If condition 1 holds and the confusion matrix for the single k-class 
model has a sparsity level between 40% and 60% then pVn classification may provide 
performance improvements. 
Condition 3: If condition 2 holds, but the level of heterogeneity in the rows of the 
confusion matrix is low then pVn classification will provide performance 
improvements, otherwise it will not. 
Condition 4: If a multiclass prediction task has a large number of classes (e.g. more 
than 20) and the level of heterogeneity in the rows of the confusion matrix is high 
then pVn classification will not provide performance improvements (still a weak 
predictive theory) 

I call condition 4 a weak predictive theory since I have based my conclusions 
on a single dataset and one algorithm. I will need to conduct studies on more datasets 
with large numbers of classes and more classification algorithms in order to obtain 
more evidence to support the claim for this condition. 

7. Conclusions 
The purpose of writing this paper was to provide an account of how I invented pVn 
classification, which I have found to be an effective ensemble classification modeling 
method. I achieved this through experimentation and observation based on the design-
science research paradigm and the scientific method of conducting research. It is 
important to note that many of the negative results (dark clouds) that I encountered 
provided useful insights (silver linings) that guided me towards hypothesis 
formulation for pVn classification, and formulation of predictive theories on the 
conditions when pVn classification should be applicable for multiclass prediction 
tasks. 

Appendix 
This appendix provides tables with detailed results of experiment outcomes.  The 
confusion matrix for the letter recognition dataset consists of 26 x 26 = 676 cells. 
Only the top half of the matrix is given in Tables A-1a and A1-b. Table A-2 provides 
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the values for the Gini index of heterogeneity for letter recognition confusion matrices 
for the ANN MLP classification models. Table A-3 provides the values for the Gini 
index of heterogeneity for forest cover type (FCT) and KDD Cup 1999 confusion 
matrices for the 5NN and See5 classification algorithms. 

Table A-1a: Combined confusion matrix for letter recognition: rows A to M , columns A to M 

Predicted class Actual 
class A B C D E F G H I J K L M 
A   1  6    1  5 7   

B     10  5 1 3 2     

C      16  25    14  4 

D 2 18    1 2 2     2 

E  12 6     24     5  

F  7 12  3   1 3 1 2 2   

G  4 6 2 3 2   4   9 11 6 

H 2  1 17   7    2 10  10 

I 1 2 6 9 1 7     11  10  

J 10   6 1 3 1 4 18      

K 1 5 3 5 3  3 10  1   1 4 

L   6 2 6  4 2 2  1   2 

M 3 4      2   1    

Table A-1b: Combined confusion matrix for letter recognition: rows A to M ,columns N to Z 

 Predicted class Actual 
class N O P Q R S T U V W X Y Z 
A 1 1  2 1 8 3 1    3  

B  2  5 20 12     5  1 

C 3 2     4 12      

D 3 3  2 3  4      1 

E     9 5 10    5  19 

F 5  10   5 7  3 6 2 12  

G  5 4 35 9 8   1 2 6  1 

H 12 26 1 2 27 1 6 10 13  2 2  

I   2  1 14       3 

J  2 2 1 2 15 2    3  7 

K    6 29 3 4 2   15   

L 1   8 5 1  1   16 2  

M 14  1  11   3      
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Table A-2: Gini index of heterogeneity for Letter recognition confusion matrices 

Gini index of heterogeneity 

class Gini class Gini 

A 0.874 N 0.889 

B 0.831 O 0.901 

C 0.802 P 0.790 

D 0.790 Q 0.889 

E 0.848 R 0.867 

F 0.907 S 0.884 

G 0.872 T 0.874 

H 0.894 U 0.748 

I 0.866 V 0.803 

J 0.867 W 0.668 

K 0.853 X 0.894 

L 0.869 Y 0.866 

M 0.765 Z 0.867 
Mean  0.845 
Minimum  0.668 

 
Summary statistics for the Gini coefficient values 
for the 26 classes 

Maximum  0.907 

Table A-3: Gini index of heterogeneity for the FCT and  KDD Cup 1999 confusion matrices   

Gini index of heterogeneity  
Dataset 

 
Class 5NN algorithm See5 algorithm 
C1 0.605 0.523 
C2 0.708 0.672 
C3 0.550 0.564 
C4 0.463 0.000 
C5 0.594 0.571 
C6 0.635 0.596 

 
 
Forest 
Cover  
Type 

C7 0.490 0.000 

Mean 0.578 0.418 
Minimum 0.463 0.000 

Summary statistics for the 
Gini coefficient values for 
the 7 FCT classes 

Maximum 0.708 0.672 
    

NORMAL 0.553 0.447 
DOS 0.409 0.585 
PROBE 0.391 0.176 
R2L 0.116 0.235 

 
 
 
 
KDD Cup  1999 

U2R 0.411 0.219 

Mean 0.376 0.332 
Minimum 0.116 0.176 

Summary statistics for the 
Gini coefficient values for 
the 5 KDD Cup 1999  
classes Maximum 0.553 0.585 
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Abstract. Often, when evaluating their algorithms, authors will present
their performances according to a set of metrics run over a given test
dataset. They may then present the sensitivity of results to changes in
parameters, and that’s it. We believe this approach is incomplete. We
propose a more comprehensive evaluation approach that encompasses,
where applicable, four steps: 1. drawing a chart with the Production
Possibility Frontier against different users’ utility curves, to match user
preferences against available algorithms; 2. using statistical (not t-) tests,
to validate the relative worthiness of different algorithms; 3. specific eval-
uation, to determine whether the winning algorithm is so for all types of
observations in the dataset or just a few, and whether it is possible to
combine competing algorithms to improve efficiency/efficacy; 4. flagging,
to bring to light, in a mathematically robust manner, the conditions in
which the favoured approach is likely to make mistakes and to supply this
information to the user. In this paper, we shall be present each of these
techniques. We shall then apply them to two different real experiments
in the table analysis domain.

1 Introduction

It is a commonly used evaluation strategy to run competing algorithms on a test
dataset and state which performs better in average on the whole set. Often, an
analysis of the impact on performance of different choices of parameter settings
is also presented. We call this generic evaluation. Although it is important, we
believe this type of evaluation is incomplete.

1. To begin with, an algorithm may present better results than another on some
relevant metrics but not all metrics and a choice between such algorithms
is in fact entirely dependent on user preferences and making this explicit is
important. There are a number of approaches for doing this. We propose
drawing a Production Possibility Curve against users’ specific utility curves.

2. Secondly, an algorithm may present better results than another on a given
dataset, but the difference may not be big enough be likely to extrapolate
to all likely cases. To overcome this problem, adequate statistical tests of
results are required [1] (and we do not mean t-tests).

3. Furthermore, an algorithm may on average be worse than another on the
whole of the dataset, but it could be better on an identifiable subset of the
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data and determining this could lead to the identification of a combination
policy between them that would either increase overall results or overall
productivity. Specific evaluation, also called SpecVal, is the methodology we
developped for this purpose. Without specific evaluation, we cannot prove a
single algorithm to be the best on the whole dataset.

4. Last but not least, not enough attention is given, in most papers, to in
what circumstances the favoured algorithm makes mistakes. We suggest us-
ing Flagging for this purpose. Identifying this not only facilitates the under-
standing of when the algorithm can or cannot be expected to perform well,
which is relevant for any potential users, but also it can actually help improve
the original algorithm, potentially highlighting aspects of easy improvement.

In this paper, we present our methodologies for each of these four techniques.
We shall then implement them along side generic evaluation on two experiments.
Experiment 1 aims at locating tables in ASCII files and we shall see how flagging
helps improve the algorithm’s performance. Finally, in the second experiment,
which aims at grouping table cells into columns, specific evaluation allows de-
termining a policy for dividing the search space in two regions, one where the
overall winning algorithm must be used, and another where the simpler algo-
rithm performs just fine. Combining them allows an increase in efficiency when
compared to just using the winning algorithm.

2 The Four Explained

2.1 Production Possibility Curve and Utility Curves

Suppose we want to compare two algorithms on substitute performance metrics,
such as performance and recall, which are best for classification problems, or
their counterparts for grouping and diviging problems, completeness and pu-
rity [6]. If one algorithm has one lower and one higher etric than another, both
algorithms are efficient and a choice between them is always user specific. Dif-
ferent approaches can be used for tailoring alternative efficient algorithms to
users’ needs. Some common ways are to minimise total cost or to maximise the
harmonic mean between the metrics. However, because there can be as many
preferences as there are users, we would have to compute different CPFs/costs as
there are user groups. We shall here look at a more visually exticing alternative,
first developed in Microeconomics, the science of optimising the attribution of
scarce resources to vast needs.

When we represent the results of all algorithms that are available for a given
task on a scatter plot that has the two substitute metrics for axes, and we
connect the efficient algorithms to each other, we obtain a line that represents
the maximum combinations of the metrics that is attainable with the resources
available. This is called a Production Possibility Curve (PPC).

The degree to which one user prefers completeness to purity or vice-versa can
also be represented in the same chart using Utility Curves (UCs) [9]. A utility
curve joins together all the combinations of C&P that please a user equally;
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preference sets are normally represented as parallel lines; UCs closer to the top
right corner of the plot, i.e. farther from the origin, represent a higher level of
utility for the user, leaving him more satisfied; the UCs of a user who is consistent
in his preferences never cross.

In Figure 1, we draw a PPC from the results of five different algorithms. Only
algorithms D and E are efficient, since the remainder represent simultaneously
less C&P than these two; therefore only D and E appear on the PPC. We also
draw two sets of UCs representing the preferences of two different users, X and
Y. User X likes purity and completeness equally, thus the slope of his utility
curves is −1, while user Y considers purity to be 6 times less serious a mistake
than completeness, thus his UCs’ slope is −1/6.

To determine each user’s favourite algorithm, we identify the point where the
user’s UCs intersect the PPC farthest from the origin. We can clearly see that
both users prefer method E, although user X likes D almost as much.

D

A

C
B

Fig. 1. A user’s favourite algorithm lies on the farthest from the origin intersection
between his/her Utility Curves and the PPC.

In Figure 1, we represent each alternative algorithm as a point, which corre-
sponds to a particular choice of parameter settings. Now suppose that, by varying
the choice of parameters, we can achieve a continuous combination of complete-
ness and purity such as the blue lines in Figure 2. In that case, we can draw the
PPC as the addition of the right-most portions of either lines, thus forming the
orange line in the figure. Against this, we can draw the utility curves to simul-
taneously determine the algorithm settings and the parameters that maximise
different users’ utility. In the example in Figure 2, the orange dot represents the
point on the PPC that both users happen to prefer, the PPC being constructed
as the outermost path along either one of the available algorithm performances;
as such, both users prefer algorithm B, with the precise choice of settings that
led to the orange dot.
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Algorithm A Algorithm B

Fig. 2. Here the PPC is constructed as the outermost path along either one of the avail-
able algorithm performances; both users prefer algorithm B at the choice of parameters
that gives rise to the performance of the orange dot.

2.2 Testing the statistical validity of results

One algorithm may seem better than another when we compare their perfor-
mance metrics together, however the difference might not be statistically signif-
icant, i.e. they might not derive from an actual difference in the goodness of the
algorithms but instead might be due to chance from running the experiment on
this particular data on not another (this is called sampling error). One method
that does not present a statistically significant in either completeness or purity
to another can be considered its equivalent.

T-tests are not adequate for this purpose among other reasons because they
require the difference between algorithms to follow the normal distribution,
which normally it does not. Without the verification of the underlying require-
ments, all statistical tests are irrelevant.

We shall be using some of the statistical tests suggested by [1], who explains
that the following tests are appropriate for the purposes of comparing average
algorithm performance over a set of datasets:

– for comparing two algorithms to one another, the Wilcoxon signed-ranks test
is suggested. It is a ranks test that, to be valid, requires only that the data
be independently generated;

– for comparing several algorithms to one another, it is best to start with the
Friedman test as corrected by [2] to determine whether there exist significant
differences among the overall results of the different algorithms; and then
apply the Nemenyi test [3] to compare any pairs of algorithms to each other.

It is important to here call attention to the fact that it is incorrect to use
cross-validation for this purpose. In fact, because of the overlap between the
different training sets, there is no independence in the results obtained in each
test set. As such, although average results can be adequately estimated, their
variance cannot and so any statistical tests are biased. Independent sampling is
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the major common requirement for the vast majority of statistical tests (if not
all); even paired samples require each pair be independent from the other).

2.3 Specific evaluation, SpecVal

From the two previous techniques, it should have transpired which of the algo-
rithms under competition is the best on the dataset as a whole. Specific evalu-
ation will further assert its goodness by asking “Is this always the case?”. We
shall be applying a systematic methodology developed in [7] for determining
whether and in what conditions one algorithm performs better than another on
an identifiable subset of the reference universe.

A posteriori determining which algorithm works best for which parts of the
data is interesting in itself, but if we manage to, with some degree of accuracy,
determine it a priori, then we can devise a policy for deciding which algorithm
to use under which circumstances and as such increase results or efficiency.

Specval methodology
1. Metrics for winner choosing. Choose the relevant performance metrics.
2. Winner choosing. For each record , identify which algorithm works best.
3.Metrics for characterisation. Characterise each record of the dataset on metrics
built using the results of all algorithms plus whatever other known metrics are
reasonable on each element of the dataset, trying to compile as large a set of
features as possible. The idea behind these features is that they should capture
the essence of a well obtained result.
4. Analysis. Present the above data to your choice of data analysis algorithm.
Different algorithms are potentially more appropriate for different tasks and
research goals. Forexample, we used principal component analysis coupled with
decision trees in [7], but use decision trees alone in this paper. Regardless of how
you choose to analyse your data, include a classifier that will, given the metrics,
predict which algorithm works best on each data item and output the respective
probability.
5. Result 1. If the model does not extrapolate well to the test set, specific eval-
uation can be considered inconclusive. We come to this result in section 3.1. If
it does extrapolate and if applicable, interpret the model(s) built, as it(they)
divide(s) your universe of reference into subsets that were mathematically ob-
tained and are more valid for your problem than any others recommended in the
literature. We do this in section 3.2.
6. Deployment. Apply the classifier to each observation in the test set in order to
determine which algorithm is more likely to be the best for it; apply the favourite
algorithm for it.
7. Result 2. Measure the performance of this combined result against that of
applying the algorithms independently.

– If composite performance is higher, this means that:

- none of the algorithms is better than all others in all cases,
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- results are maximized if each algorithm is applied on the subset of the
world it is an expert on,

- you have developed a methodology that can be used for combining com-
peting algorithms,

– If composite performance is equivalent and the independently worse algo-
rithm is the simplest (we come to this result in section 3.2), then:

- you can apply computational cheaper algorithms to parts of the dataset,
thus increasing efficiency with little risk of lowering efficacy,

- you have developed a methodology that can be used for combining com-
peting algorithms,

– If composite performance is equivalent and the independently worse or equal
algorithm is the most complex, OR if the composite approach performs worse
than the independently winning algorithm’s, then call this a absolute king
in its field (we come to this results in [7], section 4).

Notice that defining policies for combining algorithms is not very original.
Mixture of experts, for example, have been doing this for years. The novelty is
in proposing that performance evaluation be considered incomplete without the
verification of the ability of algorithms to perform well in the different types of
cases, and not just the majority of cases present in the dataset. The novelty is
showing how a probabilistic-based combination policy can be achieved via the
application of a simple methodology. Last but not least, the novelty is also in
applying combination techniques to table location and column segmentation.

2.4 Flagging

After all this, you now have your favourite algorithm for handling the problem
at hand, be it an independent algorithm or a combination between available
algorithms. Can it still be improved? And can you distinguish cases where the
approach is likely to be more or less successful?

The idea behind flagging is really quite simple. Basically, using the features
compiled for specific evaluation, under ”‘Metrics for characterisation”’, one can
build a classifier for distinguishing when the algorithm obtains the correct re-
sponse from those when mistakes occur. We recommend using a decision tree
because it provides humanly readable rules for how to cut up the objects in the
dataset into subsets with common characteristics, some of which will correspond
to areas of high performance and others of low performance of the algorithm un-
der test. Being able to verbalise this, i.e. to understand the conditions of victory
and failure of your algorithm is as important as disclosing its average results and
more general than providig random examples of success and failure.

Another side effect of specific evaluation and flagging is that the more capable
features at grasping the goodness of results in your problem, among all you
compiled in step 3 of specific evaluation, will become evident.

In the following sections, we will see the practical application of these tech-
niques over a set of two experiments in table research.
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0 1 2 3 4

Completeness 67.0% 67.0% 64.3% 69.6% 82.6%
Purity 9.6% 34.8% 44.9% 52.2% 38.1%
CPF - User X 17.3% 45.8% 52.9% 59.6% 52.2%
CPF - User Y 40.4% 59.1% 60.6% 66.4% 70.8%
Total cost - User X 211 192 200 173 137

Table 1. Results that compare our different models’ performance on the test set, for a
user X who likes cmopleness and purity the same and a user Y who prefers completeness
6 times more than purity

3 The Four In practise

In order to conduct our experiments, we collected 22 different PDF documents
from the internet, which we converted to ASCII using the pdttotxt 2002 linux
utility. As a result of the conversion, each line of each document became a line
of ASCII, which when for example imported into Access becomes a record in
a relational database. Some alignment issues result from this conversion. We
ground-truthed the data manually. Our documents have lengths varying between
13 and 235 pages with very diverse page layouts; each document contains between
3 and 162 tables. In total, we have 96,164 lines and 1,196 tables.

3.1 Experiment 1

This experiment aims at detecting tables in ASCII files. The task we are testing
involves identifying likely table boundaries and then, taking the areas within,
classifying them as table or not. Because the task involves grouping lines into
tables, completeness and purity are adequate performance metrics.

The research question is ”‘How best to build an HMM for table location?”’.
We shall be comparing the results of five different algorithms: model 0 is a non-
HMM baseline, and models 1 to 4 HMM configured in different manners, [5].

In table 1, we show the results of each algorithm. We shall be exploiting them
much further in the subsequent headings. Notice that they seem quite low, but
considering the difficulty of the data with which we operate, they are not [8].

Production Possibility Curve and Utility Curves Model 4 is the model
for which the number of complete and pure tables found is maximised. Is is also
the model for which total cost is at its minimum. However, this total cost and
CPFs portray only personal and non-transferable sets of preferences. In order
to obtain a more general result, we shall draw the Production Possibility Curve
that corresponds to the models on either dataset.

In Figure 3, we show that only models 3, and 4 belong to the PPC (which
we draw in bright green). In the same figure, we also draw (in black) the utility
curves (UCs) of user X, who is indifferent between completeness and purity and
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as such his UCs have -1 for slope, and of user Y, who prefers completeness 6
times more than purity (in brown): -6 is the slope of the brown utility function.
If we draw parallels of either utility curve until they touch the PPC at the
farthest point from the origin, we can determine each user’s favourite model:
judging from the test set, both users happen to prefer model 3, although user X
is almost indifferent between them.

0

2

1

3

4

PPC User X's UCs User Y's UCs

Fig. 3. Choosing the favourite algorithm: Production Possibility Curve drawn from the
test set versus user’s X and Y’s utility curves

Verifying the statistical validity of results In order to test the statistical
validity of these results, i.e. to verify whether the observed differences in results
are likely to generalise well to unseen cases, we start by applying Friedman’s test
as corrected by [2]. This and Nemenyi’s test require results be measured on three
or more independent datasets. In order to obtain these, we measure completeness
and purity separately for each different document in our test set, there being 19.
There turned out to be significant differences between the algorithms.

Table 2 presents the results of the Nemenyi’s test for both completeness and
purity in the test set. The theoretical critical value, CD, now equals 1.73.

Model 0 is simpler and computationally less expensive than the remainder,
while having as good or better completeness than the remainder. Model 4 has
just as good completeness as Model 0, but better purity, as such model 0 is not a
good choice, if only completeness and purity matter. Models 1 and 2 are always
equivalent and so are models 2 and 3; Model 4 is better than Model 2 purity-
wise and equivalent completeness-wise, therefore we can eliminate models 1 and
2 and just keep Model 4. Models 3 and 4 are equivalent. It is important to heve
this knowledge to relativise the results obtained in the previous analysis.

From here we can eliminate models 0,1 and 2 as unworthy choices and state
models 3 and 4 as likely to have equivalent ability to generalise to unseen cases.
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Completeness Purity
Models 0 1 2 3 4 0 1 2 3 4

0 0 2.9 2.6 1.5 1.3 0 -1.9 -1.6 -2.4 -3.6

1 -2.9 0 -0.3 -1.4 -1.6 1.9 0 0.3 -0.5 -1.7

2 -2.6 0.3 0 -1.1 -1.3 1.6 -0.3 0 -0.8 -2.0

3 -1.5 1.4 1.1 0 -0.2 2.4 0.5 0.8 0 -1.2

4 -1.3 1.6 1.3 0.2 0 3.6 1.7 2.0 1.2 0
Table 2. Table of differences between the models’ average rankings in completeness
and purity; orange signals statistical significance of an improvement in result, while
blue signals a reduction.

Specific evaluation 1. Metrics for winner choosing. We will measure the qual-
ity of each table’s location using the harmonic mean, for a user who likes both
equally, of continuous completeness and purity, CPF [6]. Naturally, a detected
table that holds no real table lines is 0% pure; and a missed table is 0% complete,
since none of its elements were detected. By convention, we choose to give 100%
to the other metric so as to avoid penalising these errors twice.
2. Winner choosing. We calculate the CPF for each detected table. We then
obtain results for each existing table, by averaging over however many tables it
got detected into. For each existing table, we then determine which algorithm
allows the highest metric.
3. Metrics for characterisation. We proceed to characterise each of the tables in
our dataset according to the survey of features presented in detail in 7. In fact,
we compiled over 100 features, some developed by us and others used by other
authors, to measure the goodness of a table configuration. From other authors
we took the following metrics: average number of cells per row and column
and its standard deviation[12], the cumulative length, position and content type
consistency of the table’s cells[12], the degree of alignment of each column[11], the
ration between the maximum and minimum length of the columns of a table[8],
the average of the proportion of inner spaces per line[4]. We also proposed, among
others: the total number of columns that are not separated by a clear river of
vertical white space (NegNum); and the difference between the average number
of cells per column(line), which gives an expected number of lines(columns) in the
table, and the actual number of detected lines(columns). This difference, which
we call ErrCol(ErrLin), can reflect how sparsely the table is filled in: tables
that have a similar number of cells per column(line) will have ErrCol(ErrLin)
tend to zero. We calculated these features on the results of both each of models
3 and 4. Some of those features require knowing the number of columns in the
table. We estimate this by applying, to the result of the two models, a simple
parsing algorithm [7] to find cells within lines; we then consider the number of
columns in a table to be equal to the maximum number of cells per line.
4. Analysis. We apply a decision tree classifier to determine, for each existing
table, which algorithm would have allowed better results (on the whole existing
table). Tables for which one algorithm does not outperform the remainder (i.e.
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ties) are excluded from the learning stage. We used SAS Eminer (version 4.3)
to run a decision tree that would, from the features, predict whether the table
would best be handled by model 3 or 4. We decided to use a decision tree because
the model thus produced is not a black box and as such it can allow us not only
to identify which of all the features used are more relevant to distinguish good
tables from bad ones, but also to understand what makes a good or a bad table.

5. Result 1. When we apply the suggested classifier on the test data, we identify
the best model on 31 cases, but at the cost of attributing 62 cases to the worst.
We come to the conclusion that it is not possible to divide the set into significant
subsets using these input features. Specific evaluation is therefore inconclusive
of the relative performance of each algorithm in sub-parts of the space.

Flagging After adding to the result of model 3 some hand-built heuristics
designed to accommodate aspects of the table problem that we did not manage
to integrate into the probabilistic model [7]. The goal is to understand in which
conditions the algorithm is more likely to provide unsatisfactory results.

We decided to run independent classifiers for each typical location error:
detected tables can be falsely, impurely, or incompletely detected, or a given
existing table can be missed altogether. The decision trees for identifying missed
or incomplete tables did not extrapolate well to the test set.

The model for distinguishing pure tables allows us to divide the set of existing
tables into two subsets where there are different probabilities of a detected table
being impure. The two subsets are determined based on page characteristics: the
average number of inner space characters per line of the page, SpaceAvgPPage.
If this value is above 15, meaning that any columns on the table are likely to be
well apart and thus our table location algorithm has little trouble distinguishing
it from non-table lines, there is 85% chances that the table is pure. Otherwise,
the odds of it being pure are of just 60%. When we look at the proportions of
pure and impure tables in these two subparts of the test set, we obtain similar
values, which means the rule can be generalised beyond the training set. As such,
this information, 60% and 85%, can be used to flag each table with its likelihood
of being pure or not, which can be useful to restore coherence if incoherence is
detected further down the table analysis process. It is also useful to give the user
a perception of the advantages and disavantages of the algorithm.

Finally, we built a decision tree to detect false tables: the row content type
consistency (CTC∗

r ) of a detected table is above 0.97 (+1 denoting extreme
consistency), there is 88% probability that the table is false. This means that
if a detected table has elements of mostly one content type, it is likely to be
false. We measured this on the test set, and of 22 false tables we manage to
identify 15, only misclassifying 2 true tables. As such, we conclude our model is
worthy. When we implement this data-induced rule into our datasets, we obtain
an increase 0.6pp in purity with a decrease of 0.1pp (0pp) in completeness in the
training(test) set. There is no statistical evidence that this result is significantly
better than the model before the implementation of this rule, however, even
when the improvement only involves only a small part of existing tables in the
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world, it is nice to have an algorithm that copes with specificites as well as
generalities and flagging can give us this with little cost. Our final completeness
and purity harmonic mean (CPF) for a user that likes both dimensions equally
is now 71.1%/72.2%/64% in the training / validation / test sets and in the, and
75.3%/81.6%/67% for a user who likes completeness 6 times more than purity.

3.2 Experiment 2

This experiment aims at grouping cells into columns. We use the datasets de-
scribed in the beginning of this section 3; cells are derived from lines with the
previously mentioned simple parsing algorithm, as per previous work [7].

We produced two algorithms: a complex one, which we call grid, based on
inter-word vertical overlap; and a very simple one, which just gives each cell a
column index equal to the number of cells to its left plus one, in all lines with
a maximum number of cells filled in; in remaining lines vertical overlap is used.
Apart from simple, this approach means that if a table has all cells filled in and
their segmentation is correct, the derivation of columns will be perfect, regardless
of any alignment issues.

The composite approach via specific evaluation Our goal in this subsec-
tion is to find a way to optimally combine the simple and the grid approach.
1. Metrics for winner choosing. We need to compare the results of the algorithms
to each other on a particular table. Our definition of “better” will depend directly
on the number of complete and pure columns obtained by each algorithm.
2. Winner choosing. We then create a dataset with one record for every table
in our data and we decide whether one algorithm is better than the other or
whether they present equivalent results. For 80% of all cases in the training set,
there is indifference between one model or another, for 13% the grid approach is
better and the 7% the simple approach outperforms. This is our target variable,
which we will try to predict using a decision tree. Again, we here use a decision
tree because it allows a humanly readable classifier.
3. Metrics for characterisation. We proceed to characterise each of the tables
in our dataset according to the features presented in [7] and described briefly
in 3.1. We calculated these features (which depend on column configuration) on
the results of both the simple approach and the grid approach.
4. Analysis. Again, using SAS Eminer (version 4.3) to run a decision tree that,
from the features, predicts whether the table would best be handled by the
grid or the simple approach. The training set contains 144 tables, since for the
remaining tables there is indifference between using one algorithm or the other.
This decision tree is presented in Table 3.
5. Result 1. Both features test the quality of the alignment of the result of the
simple approach, in terms of consistency of start, mid and end position of the
contents of the cells in each column, CPC∗

c , and in terms of the presence of
clear rivers of white space between all but at most one column, NegNum. The
functions as a test to the quality of its results, a reject option. As such, we can
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12 How to make the most of your evaluation of results?

Condition Decision Probability # of cases Leaf

If the per table average consistency of cell
position in each column, calculated us-
ing the simple approach, CPC∗

c < 0.46

Grid 85.3% 95 1

else if the total number of negative column
separators calculated using the simple
approach, NegNum ≥ 1.5

Grid 65.0% 20 2

else Simple 100% 29 3

Table 3. Decision tree classifier for choosing the favoured algorithm for each table

apply the simple algorithm to all tables and then, for those which fail the test
that the decision tree represents, we can apply the grid approach.

6. Deployment. In Table 4, we present the results of all three methods on the test
dataset: there is only one efficient algorithm, since the grid approach is better
than the simple approach on both metrics, and so is the composite approach in
relation to the other two. Therefore, there is no need for drawing the PPC.

Simple Grid Composite
Complete and pure columns 721 845 859
Completeness 76.8% 83.2% 84.4%
Purity 77.6% 90.1% 90.7%
CPF 77.2% 86.5% 87.4%
Total cost 1,012 536 499

Table 4. Comparative results of the simple, grid and composite approaches

The Friedman test confirms that there are statistically significant differences
in the completeness and purity of the different algorithms in the test set. The
Nemenyi test further confirms that, on the test set, the composite algorithm’s
completeness is significantly better than the simple one’ while the grid and the
composite approaches are deemed equivalent in terms of their ability to extrap-
olate to unseen data, at 10% significance.

As such, we can conclude that combining the grid and the simple approach
is a good idea, as it is better than the simple one and as good as the grid one
on the test set, while being computationally simpler.

7. Result 2. As we can see, by using the composite approach in the revised test
set, we increase both completeness and purity simultaneously in relation to either
contributing approaches applied independently. The magnitude of the improve-
ment depends on the proportion of the different types of tables in a particular
dataset. This result serves to make three important observations regarding the
problem at hand:
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How to make the most of your evaluation of results? 13

– for some tasks, not one algorithm can treat all cases, some algorithms being
better for some tables than others;

– by carefully analysing the a posteriori conditions in which a table analysis
algorithm fails or succeeds, we can find a decision rule for deciding, a priori,
which algorithm is more likely to yield better results and by doing so we can
increase overall performance.

– to conduct a general evaluation, i.e. a measure of the average performance
of an algorithm over a whole dataset, as most authors do, is a worthy result.
However, vital information may be lost if a specific evaluation, i.e. if an
attempt to partition areas of the space of table possibilities for which each
algorithm is more or less adequate, is not conducted.

Flagging In order to flag error prone decisions, we again ran a decision tree
to try and identify whether a table contains impure or incomplete columns. We
again used SAS Eminer (version 4.3) for this purpose, with the features described
in [7]. Again, we decided to use a decision tree because the model thus produced
is not a black box and as such it can allow us: a) to identify which features work
best, and b) to understand what makes a good table and a bad one, which we
find relevant at this early research stage. The tree has low recall (33%) but high
precision (84%) in the test set. We present it in Table 5: it isolates five leaves
that are likely to be impure.

Description # of -
cases

Prob-
ability

Tables with negative white space, meaning there exists no river of
white space between two given columns (NegNum > 0.5) AND:

- the page holds more than 53 table candidates (Silva03abs > 53) 291 70%

- there is a small amount of positive white space between the columns
of the table in relation to its total width (WhiteProp < 5.5)

130 80%

- there is little content type consistency in the column (CTC∗
c < 0.39)

and average contents are narrow (LenMean < 9).
210 67%

Tables without negative white space, meaning there are rivers of
white space between all pairs of adjacent columns (NegNum ≤ 0.5),
AND irregular number of cells per line (ColEspStd > 1) AND:

- there are plenty of empty lines AND low length consistency per
column (CLC∗

c < 0.04)
54 85%

- the table has more than 75% numeric contents AND the total vari-
ance explained by the relevant main components is low, meaning
there is low consistency in length, start, mid and end position of
each column’s contents (PropV ar < 83%).

24 79%

Table 5. Flagging tables with impure columns
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14 How to make the most of your evaluation of results?

Notice that, in spite of our dataset containing several features that were
developed by other authors [8, 10, 11, 12], most of the features that were selected
by all trees were originally developed by us (the only exception being ColEspStd
[12]). Features CTC∗

c and CLC∗
c are inspired on [12]’s, but we have improved

them so that a reference point for interpreting them be preserved.
Because in the task of grouping cells into columns there is a statistically sig-

nificant positive correlation between impurity and completeness (as the number
of cells to group is set a priori, thus consituting a null sum game), we shall not
build a flagging tree to detect incompleteness.

The knowledge gathered via flagging can be used to find alternative treatment
for flagged cases, which we shall not attempt to do in this section, but have in
the previous. It can also be used to inform the user of our degree of confidence
in each specific part of the outcome and alert him when a problem is likely to
exist in this or that particular instance, thus clearly separating likely to be good
from likely to be less good results, and providing a clear path for improvement.
Finally, it can facilitate automatic error correction at posterior steps in a multi-
step system.

4 Conclusions

In this paper, we have presented four techniques that can take the exploration of
experimental results farther: adequate statistical testing, production possibility
curves versus user utility curves, specific evaluation, and flagging. We have seen
them applied, with appropriate variations, through two real experiments. We
demonstrate, over the course of the experiments, how they are important for
bringing to light the advantages and disadvantages of competing algorithms:

1. the use of the adequate statistical test is fundamental for determining how
different algorithms compare to each other on a given set of data;

2. production possibility curves allow clearly depicting each algorithm against
user preferences and determining an optimal for each user;

3. flagging allows not only potentially identifying clear ways of improving the
current algorithm, as it did in section 3.1, but also measuring the probability
of each result being accurate, which can be important information for the
users of the data or for subsequent processing steps; and,

4. specific evaluation allows assessing the relative goodness of competing algo-
rithms on their ability to treat different sorts of cases, having the potential
to lead to the formation of probabilistic-based combination policies that im-
prove over the individual methods in terms of efficacy, efficiency, or both.

In the future, we intend to apply the four steps of evaluation to other exper-
imental fields.
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On the search for and appreciation of
unexpected results in data mining research
(or: Science - we might be doing it wrong)

Albrecht Zimmermann

KU Leuven, Belgium

Abstract. An integral part of scientific research is the constant search
for new results related to existing hypothesis, to either bolster their
claims, or falsify them to advance the field. Using the example of four
studies that did just that in data mining research, I will argue that the
data mining community is neither interested in such studies, nor appre-
ciates their unexpected results. Since it is my opinion that this is an
attitude that holds the field back, I propose a change to the conference
format that can be expected to motivate researchers to undertake more
such studies, and give them higher visibility.

1 Introduction

The majority of our progress in understanding the physical world in the last
150 years, and the technological advances arising from it, can be traced back
to the diligent application of the scientific method. Fields that have rejected or
misapplied the scientific method, on the other hand, can be seen to stagnate or
even regress. An important part of the scientific method is the repeated attempt
to falsify hypotheses, i.e. to generate unexpected results, as these results lead to
further progress.

As I will argue, data mining (and machine learning) research currently mis-
applies or even ignores the scientific method to a certain degree. Specifically,
I will show that few attempts are made to systematically generate additional
results related to existing work, and therefore to try and generate unexpected
results. Studies that /empgdo generate such results are often marginalized, and
their results ignored.

This article itself is admittedly not the result of a careful meta-analysis but
based on personal experiences and impressions, i.e. anecdotes. I will buttress my
claims by referring to more objectively accessible measures of the correctness of
my claims. Specifically, I will discuss four empirical studies that challenge claims
in the data mining literature and show that they were arguably not appreciated
upon submission, have been ignored by the community to varying degrees, and
have had their lessons ignored. Due to this subjective, and, given my research
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area and experiences, arguably also somewhat myopic content, I forwent the use
of the typically used communal “we” in favor of the less general “I”.1

2 The scientific method (in the empirical sciences)

In its most simplified manner, the scientific method in the empirical sciences can
be summarized in the following way:

1. The researcher has a hypothesis about the world.
2. She/he uses this hypothesis to generate a prediction.
3. He/she performs an experiment testing the prediction:

(a) The prediction is confirmed: this is considered evidence for the hypothesis
to be true, strengthening it.

(b) The prediction is rejected: this is evidence for the hypothesis to be false,
which means it has to be rejected and/or modified.

The reader will notice that this scheme implies that no matter the amount
of evidence in its favor, a single (valid) counterexample is enough to falsify and
reject a hypothesis – scientific hypotheses can only ever be provisionally true. The
true value of negative, or in the parlance of this workshop, unexpected results
lies in the rejection of hypotheses, and the resulting need for modification. A
hypothesis that has generated a large amount of confirmed predictions, on the
other hand, gives anyone employing it high confidence that it is, in fact, true.
Unfortunately, a hypothesis that has remained unfalsified for a period of time,
even if not evidence in its favor has been collected, can be mistaken for a high-
confidence hypothesis as well.

As I have stated above, this is a very simplified summarization of the scien-
tific method. For one thing, empirical experiments often do not give clear-cut
binary results. Instead, confidence intervals are employed, likelihoods calculated,
and statistical tests used to assess significance. Such assessments are more robust
if experiments are independent from each other, ideally not only independent in
time and used data but also performed by different researchers. Researchers,
being human beings, can have biases or make mistakes and a hypothesis is the
more reliable, the more different researchers have confirmed its predictions. Fi-
nally, prior plausibility can inform the interpretation of experimental results: a
result that is barely significant and derives from a hypothesis with low prior
plausibility is more likely to be accidental than a similar result stemming from
a high plausibility hypothesis.

These aspects imply something that is technically not part of the scientific
method: that experiments should be repeated, ideally often, ideally using equiv-
alent but different settings, ideally by different researchers or research groups. It
is this aspect of scientific work that is missing in current data mining research
as I will argue in this article.

1 The alternative option of referring to myself in the third person as “the author” felt
too pompous.
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3 The applicability of the scientific method to computer
science

Even though computer science has “science” as part of its name, the scientific
method as practiced in the empirical sciences is not simply applied as is. The
main reason for this is that computer science is an applied science: instead of
identifying new facets of how the physical world works, it uses such knowledge to
build what in essence are tools for helping humans sense, process, or manipulate
the world. A particular microchip is as much a tool as is a complete computer
architecture, a theoretical data mining algorithm, or its optimized implementa-
tion.2 As a side-effect of this, there is essentially only a single hypothesis in much
of computer science: ”it helps solve the problem”. If empirical results show that
the method does not help solve the problem, the hypothesis, and with it this
particular design, is rejected and/or modified. But if a method solves a problem
at all, no matter how inefficiently or ineffectively, a design is not rejected but
added to the store of knowledge computer science has built. The question then
becomes one of usefulness, i.e. how quickly the method finds solutions, and of
what quality they are, and of how well assumptions about the data that moti-
vated algorithmic design are borne out by reality. After all, the “no free lunch
theorem” reminds us that there is no single method that can be expected to
outperform all others over the range of all possible problems.

This is therefore where the scientific methods should find itself applied in data
mining: It can be assumed that a researcher has already performed the rejection
test for a new method he or she intends to propose and that methods that do
not solve the problem at all will therefore not be submitted for publication.3

Therefore, empirical evaluations should help with establishing

1. how a new method compares with the state of the art, and with similar
methods.

2. what the effects of different parameter settings are on the performance of
the method.4

3. how the data can be characterized that the method performs “well” on and
how the data can be characterized on which it does not (with thanks to Eyke
Hüllermeier for pointing out this blind spot of mine).

A proper data mining paper introducing a new method (or an improvement
to an existing one) would therefore lay out the reasoning behind the development

2 Since my argument here focuses on data mining, I will stop writing about tools
now and in the rest of this article refer to “methods”, encompassing data mining
algorithms, feature selection approaches, distance measures etc.

3 And it can be argued that this is problematic on its own: if a method with high
plausibility fails to solve the problem, this is important knowledge. This argument
would far exceed the scope of the article, though.

4 This is particularly important given the “standard settings” used in toolkits such
as WEKA [1] that are the main resources of many researchers that aim to employ
existing methods
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of the method, establishing plausibility, describe the method itself and then per-
form an extensive empirical evaluation. As part of this evaluation, the researcher
would

– select (or generate) data covering a wide range of different data characteris-
tics,

– identify methods most closely related (which should be easy given the plau-
sibility analysis) as well as a number of state-of-the-art techniques that have
been shown to perform well on this problem in past work,

– perform the experiments exploring a wide range of parameter settings while
making sure to choose well-performing settings for the comparison tech-
niques,

– and evaluate the results using statistical techniques to establish significance,
breaking the data up into subcategories on which the method’s behavior is
different, i.e. where unexpected results occur.

Most of the papers I have been assigned as a reviewer fail at covering some
or all these aspects. It is of course possible that those works are the unfortunate
exception but if some papers that have been published in conference proceedings
in past years are an indication, they are not.

Personal anecdote 1 This has in fact become my primary rejection criterion:
whether the work presents an adequate empirical evaluation of its method (where
appropriate), and so far I have identified three main violations:

1. flaws in evaluation design: for instance by claiming to compare against the
start-of-the-art but ignoring the work of the last several years, designing a
worst-case strawman algorithm as the only comparison technique, or limit-
ing the evaluation to a single data set, maybe one that is well-known to be
abnormal to boot.

2. flaws in evaluation reporting: for instance by showing averaged accuracies
without including standard deviations and/or discussing statistical signifi-
cance.

3. overselling: for instance showing results that place the proposed method roughly
equal to comparison techniques on half of the data and non-significantly bet-
ter on the other half and claiming that it “significantly outperforms” the
comparison techniques.

The distressing part for me is that sometimes the argument for plausibility has
been convincing enough that I would be willing to accept a paper with such a
flawed evaluation if I trusted the rest of the community to perform additional
evaluations and paint a fuller picture.

Even if a new method (or an improvement of an existing one) has been evalu-
ated properly in the work that proposed it, it will still be desirable and necessary
that it were reevaluated by other researchers, using newly surfaced data, but also
using data on which it has been evaluated before, using different implementa-
tions, different experimental setups, e.g. a different number of folds, such as has
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been done in the Frequent Itemset Mining Implementation competitions [2, 3].
For such studies and the possibly unexpected results they generate to have a
positive impact on the community, it is necessary to give them a central spot
in the literature. As I’ll argue in the next section, it is in this that data mining
research fails worst.

4 A number of studies showing unexpected results and
their reception

In the following, I will present and briefly discuss several papers that produced
unexpected results, showing established provisional truths in data mining re-
search to be false. I will follow this up by discussing how they have been received
by the community and what their impact has been as can be inferred from the
literature. I want to reiterate that given the breadth of the field this is necessarily
a subjective collection and subjective interpretation. I will attempt to support
my claims with more objective measures, however.

Real world performance of association rule algorithms.[4] The arguably seminal
itemset mining paper [5] also introduced a data generator for evaluating the
running times of itemset mining algorithms. Zheng et al. in 2001 showed that
the data generated in this manner showed different characteristics from real-life
data and that the run time behavior of several algorithms [5–9] differed between
the artificial and real-life data.

Implied, even though not contained, in that paper are two additional obser-
vations: First, the authors of [5] had varied the parameters of their generator,
albeit in a restricted manner, to evaluate their approach on more than twenty
data sets. Subsequent work in the field, however, used fewer and fewer data sets.
In fact, looking at the itemset mining literature, I find an inverse correlation be-
tween the age of the paper and the number of data sets used. Second, Zheng et
al. showed that Charm significantly outperformed Closet on the real-life data,
a finding that contradicted the results reported in [8], in which different data
had been used. As Zaki then showed in [6], Charm also outperformed Closet
on the data used [8] if one lowered minimum support further than had been done
in that work. The differences in performance can therefore be tied both to data
and parameter settings.

Using Classification to Evaluate the Output of Confidence-Based Association
Rule Mining.[10] Association-based classification had first been proposed in [11].
Mutter et al. showed in their work that CBA, the algorithm proposed in [11], did
not perform better than existing rule-based classifiers, putting the results of that
work into perspective and partially contradicting them. Their work furthermore
showed that replacing Apriori by Predictive Apriori proposed by Scheffer
[12] lead to better classifiers.

As a side note, the authors write in their paper that they were not able to
reproduce all the results from [11] with a reimplementation of their own, and

45



report in the thesis that the paper was based on that they also could not achieve
this with an implementation provided by the authors of [11].

Personal anecdote 2 While working on a past paper, we planned to compare
to a technique proposed by another data mining researcher. We obtained both
the original data and the implementation from the author but did not manage
to reproduce some results. After mailing him about the issue, we received a reply
along the lines that he did not understand our problem since he had been able to
reproduce the results. The result files were attached. The solution to the problem
was that while the results from the paper could be obtained, they could not be
obtained using the parameter settings from which the paper claimed they origi-
nated – apparently the parameter entries had been switched around on writing
the paper.

Obtaining Best Parameter Values for Accurate Classification.[13] Association
based classification usually works with standard values with 1% for minimum
support and 50% for minimum confidence. As Coenen et al. showed experimen-
tally, these values are not only not the best values for achieving high accuracy
but especially CBA often tended to perform worst for these settings.

Frequent Subgraph Miners: Runtimes don’t Say Everything.[14] Improving run-
ning times is a major goal in the development of new pattern mining algorithms.
As Nijssen et al. showed, many of the claimed underlying reasons for improved
run times did not hold up under scrutiny. Additionally, they found that the in-
terplay between cache size of the processor used and the size of the data set, i.e.
aspects largely outside of researchers’ control, had a strong effect.

4.1 Reception in the community

Given the works I have just listed, one could be tempted to assume that all is
well in data mining research since such works are being undertaken and papers
based on them published. The reader could also be forgiven for pointing towards
the large scale evaluations the group of Johannes Fürnkranz has undertaken
over the years, for instance, on the effects of coverage and consistency in rule-
learning heuristic [15], beam sizes [16], probability estimation techniques [17] etc
and absolving machine learning research.

The problem, however, is not so much with whether these works are done
in the first place – even though a cursory glance through a year’s data mining
conferences will show far more papers proposing new methods than ones further
evaluating existing ones. In my opinion, the problem lies instead with the effect
(or lack thereof) such studies have on the field. It is difficult to evaluate this
effect directly which is why I will use three proxies instead:

1. the venue they were published in, and whether they were full papers.
2. the number of citations (related to the number of citations the papers propos-

ing the evaluated methods received).
3. the effect as can be inferred from the literature.
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Venues and paper type Zheng et al. [4]: short paper at KDD 2001. Mutter et al.
[10]: rejected at ECML/PKDD, regular paper at the Australian Joint Conference
on Artificial Intelligence 2004, which is not highly ranked according to different
rankings. Coenen et al. [13]: short paper at ICDM 2005, which did not have
short paper submissions. Nijssen et al. [14]: workshop paper, although Siegfried
Nijssen claims that he simply never followed up on this work.5

The situation for the Fürnkranz publications is similar: [18] short paper
ICDM 2007, [15] Discovery Science 2008, not a highly ranked conference, [16]
poster SDM 2009, [17] Discovery Science.

These studies should have been front-page news, for challenging provisional
truths and showing that accepted default values and default experimental setups
were faulty. Instead there were shunted aside in favor of yet another weakly
understood new method. To be clear: there is nothing wrong with publishing
at conferences that are not highly ranked. It just indicates that the community
is not interested enough in these works to see them published in full at the
conferences it values highly.6 This makes it less likely that these works are noticed
by the wider community and the lessons learned incorporated. This has not
only to do with those works’ appearance in the conferences’ proceedings but
at least as much with having the opportunity of giving a talk to a large and
interested audience and impressing the importance of the issue on them. KDD
2011 had more than 1000 attendants. ICDM 2011, while still being a high-ranked
conference, had in the range of 400-600. Conferences like Discovery Science are
more likely to attract in the vicinity of 200-300.

Even if such a study is included in a high-ranking conference, the nature of
such evaluations is that quite a few different experimental settings are used and
lots of numbers produced. If a write-up is then forced to do with a reduced page
limit, it will be difficult to present the studies and their results comprehensively.

Citation count I used Google Scholar on August 5th, 2012, with all that this
entails, and compare each paper’s citation count with that of the methods evalu-
ated. If the insights derived from these studies found application in data mining
research and default values or experimental setups were adjusted accordingly, I
would expect a citation count for these studies that at least comes close to those
of the methods they correct.

Zheng et al.: 352 citations, compared to 13020, 990, 4178, 779, 149 for the
evaluated methods (in order of citation above).

Mutter et al.: 17 citations, 3 by papers of which I am a co-author, 2 by
papers of which Johannes Fürnkranz is a co-author, Coenen et al.: 26 citations,
7 self, 2 by paper of which I am a co-author, compared to 1582 (CBA), and 920
(CMAR) citations.

Nijssen et al.: 16 citations, compared to 1035 (gSpan), 346 (FFSM), 67
(AcGM), 779 (FSG).

5 personal communication
6 Why these conferences are highly ranked is another question to do with publishing

arcana.

47



The Fürnkranz papers: [18] 14 citations, 7 self, [15] 9 citations, 6 self, [16] 7
citations, 5 self, 2 by papers of which I was co-author, [17] 3 citations, 2 self.

Impact on the field Zheng et al. certainly had an impact since the data sets they
introduced have become standard benchmark sets and the data generator pro-
posed in [5] has fallen into disregard. However, the deeper lesson, that focusing
on a small number of data sets in proposing improvements can lead to over-
fitting effects, has clearly been lost on the community given the small number of
data sets used to evaluate itemset mining approaches, the lack of a widely-used
replacement generator, and the few large-scale comparisons [2, 3].

Given the results of Mutter et al. and Coenen et al., the experimental eval-
uations of associative classification research since 2005 should have featured the
use of Predictive Apriori and at least an exploration of a range of support-
confidence combinations. A survey of the relevant literature since then will dis-
abuse the reader of this notion.

The insights derived in Nijssen et al., while formulated in the context of
graph mining approaches, should be heeded in all pattern mining research but
claims of speed-ups having to do with canonical forms still abound.

4.2 Is this really a problem?

The reader can now (and maybe already has) argue that this is not a real prob-
lem. After all, three of the studies I discussed are concerned with itemset mining,
a field that has been researched for a while and in which no groundbreaking dis-
coveries can be expected anymore. I would have to disagree since there is no
reason to assume that the scientific method is applied more diligently in other
fields as the example of Nijssens et al. shows. Even if this were the case, data
mining research, as I have argued in the beginning, is essentially concerned with
building tools, such as itemset mining techniques. If these tools are never used
outside of academia because users do not know under which conditions they
might be useful, data mining research misses its purpose.

The reader might claim that data mining (or the subfields of data mining I
am most familiar with) is an aberration and the scientific method is employed
much more stringently in other areas. However, the examples of the works from
the group of Johannes Fürnkranz lead me to believe that those problems exist
in the machine learning community as well. But even if this is not the case, it
seems even more urgent to change the practice in data mining research lest the
area stagnate.

Finally, the reader could argue that the methods that truly make an impact
will be evaluated, and their working parameters established, in successive studies
as they are used more and more often. This has, for instance, happened to
decision tree or support vector machine classifiers. Non-performing methods get
drowned by the tide of papers published every year and so no further evaluation
is necessary.

There are at least three problems with this idea: the first is that in the ab-
sence of principled studies we do not know that the methods that rise to the
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top are truly the best (or even reasonably good) ones. They might instead be
the early ones that did not have to compete with many other papers yet, they
might be the simplest ones that everyone understands, or they might originate
from a large research group whose cross-citations help them gain critical mass.
The second problem is, as can be seen in itemset mining, that those principled
evaluations might simply never happen, even for well-known techniques. Third,
the proliferation of methods is intrinsic to the issue I am discussing here: the
relative disregard shown to works searching for unexpected results makes it ap-
pear more attractive to propose new methods (with “good” results) instead, and
the lack of scientific evaluations translates into a lack of guidance regarding the
methods that should be improved. This also means that lots of time, money, and
energy are wasted on dead end research that does not improve the field.

Furthermore, the issues I have described so far are connected to relatively
clear-cut evaluation criteria: running times and classification accuracy. In de-
scriptive data mining, which includes most of pattern mining, such clear-cut
evaluation criteria are not available. Instead, the problem to be solved there
consists of extracting underlying patterns of correlations in the data.

Remarkably enough, in at least two subfields, itemset mining and frequent
episode mining, the literature so far does not include any evaluations on whether
extracted patterns correspond to known phenomena in the data. Instead, at-
tempts have been made to evaluate the quality of found patterns by presenting
them to domain experts who were supposed to perform this evaluation [19]. An
implicit assumption in these kinds of evaluations is that the experts will be able
to properly identify interesting patterns as interesting and uninteresting ones
as uninteresting. The plausibility of this assumption is however unknown and
if psychological research on humans’ tendency to see patterns is any guide, it
might be much lower than the authors of such studies assume.

An experiment that I would like to see would consist of calibrating the domain
experts first: instead of having them evaluate significant patterns, they would
be given a mix of significant, non-significant, and random patterns and their
“accuracy” evaluated.

Personal anecdote 3 Last year, I had what I considered to be a “small” idea
for a conference paper. It had to do with feature generation, had good plausibility,
discussions with colleagues revealed no obvious flaws, and the literature study
showed that it had not been tried before. So I went for it - and the results were
atrocious. Assuming a mistake on my side, I checked everything several times
but could not find one. Finally, I gave up and tried to get this negative result
published, as a warning to others. The submission was rejected with one reviewer
writing that the results did not surprise him (and the two others that they did
not see the use of publishing a negative result until everything had been tried to
make the approach work). The reviewer admitted that she/he could not provide
a reference but provided a convincing rationalization.

Long story short, when Joaquin Vanschoren asked me to perform some further
analysis on my results for the workshop, I revisited the old scripts - and found
the bug that had escaped me. With the bug corrected, the approach works as I
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expected. Unless the reviewer knows more about my code-writing prowess than I
do (and just wanted to spare my feelings), his/her lack of surprise is surprising.

If I had managed to get these false results published, I would not have revisited
them, and since the results were negative, in all likelihood no one else in the
community would have.

5 What we can do to get back on track

In my opinion, there are at least two causes that can be identified underlying the
attitude of the data mining and machine learning community towards generating,
reporting and using unexpected results, one that is for now outside of our power
to effectively address, but also one that could be addressed by small changes to
the current conference format.

First, it is my impression that the scientific method, and specifically the need
for constant retesting, and the importance and usefulness of unexpected results,
is not being impressed on young researchers. This has ripple effects, leading
to the aforementioned badly designed (and reported) experimental results, an
unwillingness to report unexpected results, and a tendency to negatively review
papers that do report new results of existing techniques or unexpected (negative)
results. There is not much we, as individuals, can do to change this: we can
try and influence students and colleagues, we can criticize weak experimental
evaluations in reviews and point out avenues for improvement, we can support
studies searching for unexpected results. But all of these can only be expected to
be drops in the ocean given the amount of new researchers and new publications
each year.

Second, purely experimental studies that do not propose a new method do not
have a “home” in the community’s conferences. The typical conference format in
2012 was to have a “research” track and either no (SDM, CIKM, ICML, ECAI,
DS), or only one (KDD, ICDM, CIKM, ICDE) additional track (e.g. industry
and government) for submission (ECML/PKDD being the exception with two
extra tracks). The calls for papers make it explicit that this is intended in listing
the kind of papers that are solicited and papers are supposed to be subdivided
by using keywords during submission, often ones focused on problem areas. This
means that at least four different types of papers, all of which are subject to the
same page restrictions, compete for acceptance:

1. Papers proposing new methods: these works have to establish plausibility,
outline the method, and ideally show an extensive experimental evaluation.
“Good” results on at least some data will be helpful in establishing the
usefulness of the new method.

2. Papers proposing improvements to existing methods: since the main method
has already been introduced, these works only have to establish plausibility
of (and describe) the proposed improvement, and the experimental evalu-
ation can focus on showing the effects of the proposal (but should still do
so thoroughly). These effects arguably need to be positive for it to be an
improvement.
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3. Experimental evaluations of existing methods: these works need to estab-
lish the appropriateness and/or difference of their data and experimental
settings for producing new results, and need to present and analyze their
experimental results in detail.

4. Theoretical works: are something rather different.

The “success” criteria are thus different for all four types, with some easier to
evaluate than others, yet there is typically a one-size-fits-none reviewing frame-
work within which they are supposed to be evaluated.

The reader might think that journals, with their larger page count per paper
and specifically selected reviewers, can be an alternative to conferences but those
also have an attention problem: an extended version of a paper introducing a
new method will necessarily appear later than its conference version so that a
researcher who has read the conference version might not go to the effort of
reading the journal version as well. Instead of a program that every conference
participant is handed, the table of contents of a journal must be actively sought
out by researchers, and a journal paper is not accompanied by a presentation.
Finally, that a journal paper is longer can paradoxically work to its disadvantage
since a researcher seeking a quick understanding of the method would likely
prefer the shorter conference version.7

On the other hand, given the current use of keywords to subdivide submis-
sions by areas but also to a certain degree by content, e.g. foundations of data
mining, it should easily be possible to invite submissions to several different
tracks. This can be expected to motivate researchers on the fence about attempt-
ing (and attempting to publish) works generating additional results for existing
methods, and it should allow better-targeted instructions to the reviewers.

Outside of the publication context, there already exist projects that collect
experimental results for different data sets, algorithms, and parameter settings,
such as ExpDB8 and MLComp9 to enable comparison and the selection of ap-
propriate methods. These projects cannot be an alternative to a rethinking of
the scientific process in data mining research and supply a clean conscience,
however. Instead, they offer support for comparison and their success depends
on a change of mind among data mining researchers.

6 Conclusion

In this article, I have discussed the application of the scientific method in data
mining research, specifically the search for and appreciation of unexpected re-
sults, and found the field lacking in this regard. A study of a typical year’s
literature reveals a plethora of new and improved methods and few systematic
evaluations of these methods. If such evaluations are done at all, they often show

7 Additionally, journals also have the competition issue, albeit to a lesser degree.
8 http://expdb.cs.kuleuven.be/expdb/
9 http://mlcomp.org/
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well-established provisional truths to be wrong, as I have argued using the ex-
ample of four empirical studies. However, since they tend to get marginalized
during publication, the derived insights do not find their expression in future
research, and those provisional truths (while shown to be false) continue to be
accepted.

In my opinion, this self-perpetuating cycle can be attacked by acknowledging
that there is more to data mining research than just the proposal of yet another
method, and by changing the conference format to motivate researchers to un-
dertake the work necessary for understanding the strengths and limitations of
existing data mining methods. The goal of data mining research lies in providing
tools to users. This does not mean, however, that there is any merit in cranking
out ever more methods without learning under what conditions those methods
work well. The current pool of often-used methods is limited to the few that are,
if not well-understood, at least well-known and unless we change the way data
mining research is conducted, it will stay like this.
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